
Sharing and Caching Characteristics of Internet Content

Alastair Wolman

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

2002

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Alastair Wolman

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Henry M. Levy

Reading Committee:

Henry M. Levy

Anna R. Karlin

Steven D. Gribble

Date:

c©Copyright 2002

Alastair Wolman

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral degree at

the University of Washington, I agree that the Library shall make its copies freely available for

inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly

purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying

or reproduction of this dissertation may be referred to Bell and Howell Information and Learning,

300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the

manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Sharing and Caching Characteristics of Internet Content

by Alastair Wolman

Chair of Supervisory Committee:

Professor Henry M. Levy
Computer Science and Engineering

To improve the performance of Internet content delivery, many techniques exploit sharing: re-

peated requests to the same object by multiple clients. One widely deployed technique is Web proxy

caching, where requests to shared objects are served from a proxy cache instead of the origin server.

In this dissertation, we present a network tracing system that enables the study of application-level

Internet workloads, and we present three Internet caching studies performed using workloads col-

lected by the tracing system.

The first study investigates Web document sharing patterns from an organizational point of view.

We explore the extent of document sharing both within and across organizations. We find that when

clients are members of the same organization, the amount of sharing increases measurably when

compared with clients that are members of different organizations. However, this increase is not

large enough to have a significant impact on cache performance.

The second study explores the performance of cooperative Web proxy caching, focusing on the

effectiveness of cooperation over a wide range of client population sizes. Allowing proxy caches to

cooperate effectively combines the client populations served by those proxies. This provides new

opportunities for sharing, and therefore offers the potential to increase cache hit rates. Overall, we

find that proxy cooperation provides significant performance benefits only within limited population

bounds.

The final study is motivated by the increasing availability of multimedia Internet content, such as

streaming audio and video. We compare the workload characteristics of streaming-media content to

traditional Web content, and we evaluate the effectiveness of proxy caching and multicast delivery

for streaming-media content. We find that these multimedia workloads exhibit strong temporal

locality, and we quantify the benefit it provides for caching and multicast delivery.

Finally, we present the design and implementation of our trace collection system. It uses passive

network monitoring to observe all Web traffic generated by the University of Washington client

population. Our system employs anonymization safeguards to protect users’ privacy. It has been

deployed at the University network border for three years, and has scaled to handle a factor of three

load increase during that period.

Table of Contents

List of Figures v

List of Tables ix

Chapter 1: Introduction 1

1.1 Caching for the World Wide Web . 2

1.2 Workload Characteristics . 3

1.3 Workload Studies . 4

1.3.1 Organizational Sharing . 4

1.3.2 Cooperative Web Proxy Caching . 5

1.3.3 Streaming Media Content . 5

1.4 Contributions . 6

1.5 Overview . 7

Chapter 2: Background and Related Work 8

2.1 Background . 9

2.1.1 The HTTP Protocols - 1.0 and 1.1 . 9

2.1.2 Caches for the Web . 11

2.1.3 Cookies . 12

2.1.4 Uncachable Documents . 12

2.1.5 HTTP 1.0 Support for Caching . 13

2.1.6 HTTP 1.1 Support for Caching . 14

2.1.7 RTSP: The Real-Time Streaming Protocol 15

2.2 Related Research . 16

2.2.1 Cachability of Web Documents . 16

i

2.2.2 The Rate of Change to Web Documents 20

2.2.3 Document Sharing . 27

2.2.4 Cooperative Caching . 33

2.2.5 Streaming Media Workloads . 34

2.2.6 Web Workload Collection . 35

2.3 Summary . 39

Chapter 3: Organization-Based Analysis of Web-Object Sharing and Caching 41

3.1 Introduction . 41

3.2 Measurement Methodology . 42

3.3 High-Level Data Characteristics . 44

3.4 Analysis of Document Sharing . 46

3.4.1 Object and Server Popularity . 54

3.5 Document Cachability . 54

3.6 Conclusions . 59

Chapter 4: The Scale and Performance of Cooperative Web Proxy Caching 61

4.1 Introduction . 61

4.2 Document Sharing and Cooperative Proxy Caching 62

4.3 Trace collection and characteristics . 63

4.4 Simulation methodology . 64

4.5 The Impact of Population Size . 66

4.6 Latency and Bandwidth . 68

4.7 Proxies and Organizations . 70

4.8 Impact of Larger Population Size . 74

4.9 Summary and Conclusions . 76

Chapter 5: Measurement and Analysis of a Streaming-Media Workload 80

5.1 Introduction . 80

ii

5.2 Streaming Media Background . 82

5.3 Methodology . 83

5.3.1 RTSP Trace Collection . 83

5.4 Workload Characterization . 85

5.4.1 Bandwidth Utilization . 86

5.4.2 Advertised Stream Length . 88

5.4.3 Session Characteristics . 90

5.4.4 Server Popularity . 93

5.4.5 Object Popularity . 93

5.4.6 Sharing patterns . 94

5.5 Caching . 97

5.6 Stream Merging . 100

5.7 Conclusion . 102

Chapter 6: The Design and Implementation of an Application-Level Internet Trac-

ing System 104

6.1 Introduction . 104

6.1.1 Uses of Network Tracing Systems . 105

6.1.2 Contributions . 105

6.2 Alternative Workload Collection Approaches . 106

6.3 Hardware Configuration . 109

6.4 Trace Collection Software . 110

6.4.1 Privacy Protection . 112

6.4.2 Kernel Modifications . 114

6.4.3 Packet Capture: Buffer Management and Scheduling 115

6.4.4 TCP Connection Reconstruction . 116

6.4.5 Application-Level Protocol Modules . 118

6.4.6 Logging and Compression . 120

6.4.7 Denial-of-Service Attacks . 120

iii

6.5 Trace Analysis Software . 121

6.6 Performance . 123

6.7 Summary . 128

Chapter 7: Conclusions 130

7.1 Organization-Based Sharing and Caching . 130

7.2 Cooperative Caching . 131

7.3 Streaming Media . 132

7.4 Trace Collection and Analysis . 133

7.5 Future Work . 134

Bibliography 137

iv

List of Figures

2.1 An example HTTP request (top) and response (bottom). 10

3.1 Histogram of the top 15 content types by count and size. 45

3.2 Requests broken down into initial, duplicate, and cachable duplicate requests over

time. 48

3.3 Distribution of clients, objects, and requests in organizations. The object and request

graph is sorted by the number of objects in an organization. Note that the y-axis of

(b) uses a log scale. 49

3.4 Breakdown of objects (a) and requests (b) into the different categories of sharing,

for the 20 largest organizations. The labels on the x-axis show the number of clients

in each organization. 49

3.5 The left graph shows the fraction of objects and requests accessed by the organi-

zation that are shared by more than one client within the organization. The right

graph shows the fraction of objects and requests accessed by the organization that

are shared with at least one other organization. 50

3.6 The number of objects accessed by a given number of organizations. Note that the

y-axis uses a log scale. 53

3.7 Trace vs. Random Sharing. We show the fraction of requests generated by the orga-

nization that are (a) shared within this organization, and (b) shared with at least one

other organization, in both cases compared with three random client-to-organization

assignments. 53

3.8 The cumulative distributions of server and server subnet popularity. 55

3.9 Reasons for uncachability of HTTP transactions. 57

3.10 Breakdown by content-type of the uncachable HTTP transactions. 57

v

3.11 The left graph shows the fraction of cachable objects and cachable requests accessed

by each organization. The right graph shows the fraction of objects and requests that

are both cachable and shared by more than one organization. 58

4.1 Proxy cache request hit rate as a function of client population. 67

4.2 Mean and median request latency as a function of client population for the UW

trace. The error bars on the median curves are the min and max medians across the

trials. 69

4.3 Fraction of requests completed in less than two seconds for the UW trace. 70

4.4 Proxy cache byte hit rate as a function of client population for the UW trace. 71

4.5 Bandwidth consumed as a function of client population for the UW trace. 71

4.6 Breakdown of local and global proxy hit rates for the 15 largest UW organizations. 73

4.7 Comparison of the proxy hit rates for the 15 largest UW and randomly populated

organizations. 73

4.8 Proxy cache hit rate as a function of client population. 75

4.9 Hit rate benefit of cooperative caching between UW and Microsoft proxies. 77

5.1 A typical initialization sequence for viewing streaming media content. 85

5.2 Total bandwidth used over time (in Kbits/sec). 87

5.3 The left graph (a) shows a histogram of advertised stream lengths for all streams less

than 7 minutes. The right graph (b) shows the cumulative distribution of advertised

stream lengths. 89

5.4 Cumulative distributions of advertised stream lengths for modem clients and LAN

clients. 89

5.5 Comparison of the stream download length cumulative distribution and the adver-

tised stream length cumulative distribution. 90

5.6 Cumulative distribution of bytes transferred by sessions of a given length. 91

vi

5.7 Shared and unshared session characteristics. The left graph (a) shows the cumulative

distribution of session download lengths for all, shared, and unshared sessions. The

right graph (b) shows the cumulative distribution of session sizes for all, shared, and

unshared sessions. 92

5.8 Modem and LAN session characteristics. The left graph (a) shows the cumulative

distribution of session download lengths for modem and LAN sessions. The right

graph (b) shows the cumulative distribution of session sizes for modem and LAN

sessions. 93

5.9 Cumulative distribution of server popularity (in terms of both objects and sessions). 94

5.10 Object popularity by number of sessions. Note that both x- and y-axes use a log scale. 95

5.11 Number of unique clients that access the 200 most popular objects in the trace. The

x-axis shows objects ordered from left to right by the total number of accesses to

each object. 96

5.12 Object sharing. The x-axis shows objects ordered from left to right by the number

of unique clients that access each object. 96

5.13 Concurrent sharing over time. The trace is divided up into 10 second segments, and

a session is classified as shared if there are multiple clients that access the same

object during that same segment. 97

5.14 Cache size growth over time. This graph shows the total storage requirements of a

simulated streaming-media proxy cache over the trace period. 99

5.15 Bandwidth saved over time due to proxy caching. 99

5.16 Cache accesses: Hits, partial hits, and misses. 100

5.17 Effect of eviction time on cache hit rates. 101

5.18 Effectiveness of stream merging. This graph shows the cumulative distribution of

the time merged for those streams with overlapping accesses. 102

6.1 University of Washington network border configuration, including the installation

of our tracing system. 110

6.2 Software architecture of the network trace collection system. 111

vii

6.3 The data structure used to record information about an HTTP response. 119

6.4 Total number of packets per second over time. 124

6.5 Total bandwidth over time (in MBytes/sec). 125

6.6 Size of the TCP state table over time. Because each direction of a TCP connection

is analyzed separately, each open TCP connection contributes two entries to the table. 125

viii

List of Tables

3.1 Overall statistics for the one-week UW HTTP trace. 45

4.1 Overall statistics for the UW and Microsoft HTTP traces. 65

5.1 Overall statistics for the UW RTSP trace. 86

5.2 Stream control protocol connection counts. 87

6.1 DCPI Cycle Count Measurements. 126

ix

Acknowledgments

I would like to express my sincere appreciation to everyone who made my time in graduate

school rewarding and enjoyable. First and foremost, thanks to my wife Yvonne Kania Wolman, who

showed tremendous support and patience and also helped me improve the quality of my writing.

I would like to thank Hank Levy for his guidance, support, and his restrained style of encour-

agement. I learned a tremendous amount from him, and I really enjoyed working with him. Thanks

to Brian Bershad for many hours of entertaining discussions (mostly arguments, really) during our

weekly meetings, and for his leadership on the Etch project. Thanks also to the many other terrific

faculty at UW whom I had the pleasure of working with, especially Anna Karlin, Jean-Loup Baer,

Ed Lazowska, and Steve Gribble.

A huge thanks to Geoff Voelker for being a great friend and a terrific collaborator. Thanks to

all the other students who contributed to the UW Web workload analysis project including Maureen

Chesire, Neal Cardwell, Nitin Sharma, Tashana Landray, Denise Pinnel, and Molly Brown. Thanks

to the entire Etch team: Geoff, Dennis Lee, Ted Romer, Wayne Wong, Hank, Brian, and Brad Chen.

Thanks to the many terrific students I got to know during my time at UW including Ruth Anderson,

Brad Chamberlain, Sung Choi, Ben Dugan, Marc Fiucynzki, Jim Fix, Kevin Hinshaw, E Lewis,

Kurt Partridge, Mike Perkowitz, and Stefan Savage.

Finally, thanks to Steve Corbato, Terry Gray, David Richardson, and the many other people at the

UW Computing and Communications department who generously provided assistance in collecting

our trace data.

Three of the chapters in this thesis have been previously published as conference papers. Chap-

ter 3 is based on the paper “Oranization-based Analysis of Web-Object Sharing and Caching” pub-

lished in the Proceedings of the Second USENIX Symposium on Internet Technologies and Systems

[Wolman et al. 99a]. Chapter 4 is based in part on the paper “On the scale and performance of co-

operative Web proxy caching” published in the Proceedings of the Seventeenth Symposium on Op-

x

erating Systems Principles [Wolman et al. 99b]. Chapter 5 is based on “Measurement and Analysis

of a Streaming-Media Workload” published in the Proceedings of the Third USENIX Symposium on

Internet Technologies and Systems [Chesire et al. 01].

xi

1

Chapter 1

Introduction

In recent years, the World Wide Web has become the most popular application for networked

computer systems. In July of 2001, approximately 60% of all households in the United States had ac-

cess to the Internet [Nielsen 01]. A February 2000 study of an Internet traffic exchange point showed

that HTTP accounted for 58% of all the traffic at that backbone location [McCreary et al. 00]. Fur-

thermore, users are no longer just accessing static Web content over the Internet. Access to multi-

media content such as streaming audio and video clips is also becoming commonplace.

Given the widespread usage of the Web, getting acceptable performance for interactive Web

browsing is seen as important by content providers, ISP network managers, and end users. To that

end, there has been a great deal of recent focus on improving the mechanisms used to deliver Internet

content from servers to clients. One of the key mechanisms currently used to improve the delivery

of static Internet content is proxy caching. For streaming multimedia content, both proxy caching

and multicast delivery offer the potential to significantly reduce network load.

This dissertation presents the design and implementation of a network tracing system for mea-

surement and analysis of Internet applications. We demonstrate the utility of this system by per-

forming a set of three Internet traffic studies. The common theme across these studies is their focus

on sharing. Sharing occurs when multiple clients make accesses to the same Internet content over

time. Sharing plays an important role in many techniques used to improve the delivery of Internet

content, such as proxy caching and multicast delivery. For example, the amount of sharing that

occurs among a group of clients places an upper bound on the hit rate that a proxy cache serving

those clients can achieve.

2

1.1 Caching for the World Wide Web

Caching is a prevalent technique used to improve performance throughout centralized and dis-

tributed computer systems. A cache is simply a high-speed memory used to store frequently ac-

cessed objects. For the World Wide Web, there are a number of different types of caches in use. A

browser cache typically uses a combination of RAM and local disk to store recently used pages on

behalf of one user. A proxy cache typically is a dedicated machine that caches pages on behalf of

a group of users, and these users often share a connection to the Internet. The nodes of a content

distribution network are another type of caching used on the Web today. Content distribution net-

work caches (CDN caches) are similar to proxy caches in that they are dedicated machines that store

frequently accessed Web pages. There are two key differences: CDN caches only store pages from

those sites that pay for the content distribution service, and the mapping of users to CDN caches is

dynamic rather than static.

There are three fundamental benefits of caching for the World Wide Web:

• When Web documents are downloaded from a cache rather than the origin server, there is the

potential to significantly reduce the delay that the user experiences waiting for those docu-

ments to appear in the Web browser window. The latency benefit of caching depends on the

cache hit ratio, the cache load, and the network connectivity between the client and the cache.

• When an organization purchases a link to connect to the Internet, a Web proxy cache can

significantly reduce the amount of traffic on that link. This can help to reduce congestion

delays, and it may allow the organization to reduce the cost of the link.

• When pages are fetched from a cache, the amount of traffic on the Internet links between

the cache and the origin server is reduced. This cuts down on Internet backbone congestion

and server load. One of the earliest motivations for deploying proxy caches was to eliminate

Internet hot spots that arise when an unusual event occurs.

The actual benefits obtained from Web caching are very dependent on the location of caches and

the browsing behavior of Web users. In order to understand the true benefits of caching, workload

3

analysis must be done to better understand cache hit ratios and the latency and bandwidth savings

that result from cache hits.

1.2 Workload Characteristics

The Web is a complex distributed system, and one of the key design principles for improving the per-

formance of any complex system is to optimize for the common case. This principle motivates the

study of Web workload characteristics. Understanding workload characteristics helps the design-

ers of Web software and protocols to choose which problems to solve, and also allows developers

to evaluate and predict the performance of their solutions in the lab without fully deploying those

solutions.

The task of both collecting and analyzing Web workloads is a difficult endeavor. The size

and diversity of the Internet makes it difficult to collect workloads that are truly representative of

the entire network. Furthermore, the core Internet infrastructure was not designed to support easy

collection of detailed measurements. To make the problem even worse, the Web is a moving target.

Rapid growth in Web usage, rapid changes to the software for all components that interact directly

with the network (such as Web servers, browsers, and caches), and even changes to the protocol

standards, all pose the challenge that characteristics observed in today’s workloads may not hold

true in a few years.

One of the key contributions of this dissertation is the design, implementation, and experience

with deploying a scalable application-level network measurement system. This system uses passive

network monitoring to observe the Web behavior of a large and diverse group of clients. It is

installed at the Internet border of the University of Washington (UW) and it observes all Internet

traffic that flows through the border. The traffic studies in this dissertation focus on UW as a large

client population. Therefore, we filter the workload to examine only those requests that originate

from clients inside UW directed towards external servers and those responses that originate outside

UW directed towards internal clients.

The tracing system was in use at the UW Internet border for approximately three years, from

the Summer of 1998 through the Spring of 2001. During that time period, the traffic load grew by

a factor of three and the tracing system scaled to keep up with the load increases with negligible

4

packet loss. The tracing system makes extensive use of safeguards to protect the privacy of users at

UW whose Web behavior is observed. The tracing system has been used to study the characteristics

of two application-level Internet protocols, namely HTTP and RTSP. HTTP, the Hypertext Transfer

Protocol, is used to transfer most static Web content, such as HTML pages and images. RTSP, the

Real-Time Streaming Protocol, is the most commonly used standard for delivering streaming audio

and video.

1.3 Workload Studies

We performed a set of three workload studies using the aforementioned tracing system. In each

of these studies, we focus on those workload characteristics that have a significant impact on the

effectiveness of techniques designed to improve the delivery of Internet content. For traditional

static Web content, the performance optimization that we focus on is Web proxy caching. For

streaming multimedia content, we focus on both proxy caching and multicast delivery.

Although there are many different workload characteristics that affect the performance of

caching systems (e.g. the size of the documents transferred, the percentage of requests that are

allowed to be cached, or the rate at which changes are made to Web documents), the amount of

sharing among clients is a key workload characteristic because it places an upper bound on the hit

rate that a proxy caching system can achieve. Sharing is important not only because of its direct

applicability to proxy caching, but also because many other proposed performance optimizations

depend on the amount of sharing in the workload. Examples include content distribution networks,

multicast delivery for streaming media, network performance databases for server selection, and

sharing of TCP congestion control information across hosts.

1.3.1 Organizational Sharing

The first workload study in this dissertation investigates Web document sharing and caching char-

acteristics from an organizational point of view. An organizational analysis of sharing is important

because Web proxy caching is typically performed on an organizational basis. For example, Web

proxies are often placed in front of large and small companies, universities, departments, and so

on. The primary goal of this study is to explore the extent of document sharing among clients

5

both within and across multiple organizations. We also study how often accesses are made to un-

cachable documents, and whether the sharing characteristics differ for cachable versus uncachable

documents.

To perform these kinds of analyses, one needs simultaneously collected traces of multiple di-

verse organizations. Such traces are not currently available, and are difficult to obtain in practice.

To solve this problem, we use organizations inside UW to model organizations connecting to the In-

ternet. We identify 170 internal organizations at UW and we classify each client in our trace with an

organization identifier. For example, the organizations at UW include the English Department, the

School of Dentistry, and the undergraduate dormitories. We collect a trace of all Web requests and

responses from UW that protects the privacy of users, yet preserves this organizational membership

information.

1.3.2 Cooperative Web Proxy Caching

The second study explores the performance of cooperative Web proxy caching, focusing on the

effectiveness of cooperation over a wide range of client population sizes. One of the key factors

that limits the hit rate for a given Web proxy cache is the total size of the client population that it

manages. One way to increase the client population size is to have multiple proxy caches that co-

operate with each other. The increased population size provides new opportunities for sharing, and

therefore offers the potential to increase proxy cache hit rates. This study uses trace-based analysis

to investigate the potential advantages and drawbacks of inter-proxy cooperation. With our traces,

we can quantitatively evaluate the performance-improvement potential of cooperation between 170

small-organization proxies within the UW environment. We also collect a simultaneous trace of the

Microsoft campus proxy caches, which allows us to evaluate the performance improvement of co-

operation between two large-organization proxies handling 23,000 and 60,000 clients, respectively.

1.3.3 Streaming Media Content

The motivation behind our final study is the increasing availability of multimedia Internet content,

such as streaming audio and video. For example, almost all the popular news, sports, and entertain-

ment Web sites offer streaming video clips. Also, audio clips are becoming commonplace in many

6

forms such as Internet radio stations, peer-to-peer networks for music trading, and Internet retailers

that sell tapes and CDs. Compared with traditional Web workloads, these multimedia objects may

require significantly more storage and transmission bandwidth. As a result, performance optimiza-

tions such as streaming media proxy caches and multicast delivery offer the potential to minimize

the impact of delivering this content over the Internet. However, few studies of streaming-media

workloads exist. Therefore, the extent to which these mechanisms will improve performance is

unclear. This study presents and analyzes a client-based streaming-media workload generated by

a large university. Where possible, we compare the characteristics of our streaming-media work-

load to traditional Web-object workloads. We also evaluate the effectiveness of proxy caching and

multicast delivery for streaming-media content.

1.4 Contributions

The contributions of this dissertation are the following:

• We explore document sharing from the perspective of organizations. When clients are mem-

bers of the same organization, we find there is a measurable increase in the amount of sharing

compared with clients that are members of different organizations. However, this increase

is not large enough to have a significant impact on cache performance. We also explore the

impact of requests to uncachable documents – documents that the HTTP protocol rules state

are not allowed to be served by a proxy cache. We find that 40% of all the requests in our

workload are uncachable – a significantly higher percentage than previous studies reported.

• We explore the effectiveness of cooperative Web proxy caching for a range of client popula-

tion sizes, and find that the largest benefit is achieved at relatively small population sizes (on

the order of 2000 to 5000 clients). We use simultaneous traces of two large organizations,

UW and Microsoft, to confirm that combining large organizations provides a marginal bene-

fit. Combining populations of this size (each has more than 20,000 clients) makes sense only

in very high-bandwidth and low latency environments.

• We analyze the RTSP client activity generated by a large university. We study the prop-

erties of our streaming media workload and compare it where possible to the properties of

7

well-studied HTTP workloads. We also explore the effectiveness of two performance opti-

mizations – proxy caching and multicast delivery. We find that the median size of streaming

media downloads is 400 times larger than the median HTTP request size, and the mean RTSP

download size is 175 times larger than the mean HTTP size. We observe a number of proper-

ties that indicate multimedia workloads would currently benefit less from proxy caching than

HTTP workloads. On the other hand, we find that streaming media workloads exhibit sur-

prisingly strong temporal locality, which indicates that multicast delivery will be an effective

technique to reduce network load.

• We design and implement a network tracing system that allows us to observe the Web behavior

of a large client population with relatively low overhead. Our contributions in developing this

system are described above (Section 1.2).

1.5 Overview

The rest of this dissertation is organized as follows:

• Chapter 2 begins with additional background information about the HTTP protocols and sup-

port for proxy caching. It then provides an overview of related research.

• Chapter 3 examines both sharing and caching characteristics of Web workloads from the

perspective of organizations.

• Chapter 4 examines issues of scale for cooperation among Web proxy caches.

• Chapter 5 examines the characteristics of a new and increasingly popular kind of Internet

content: streaming media.

• Chapter 6 provides an overview of the design and implementation of the tracing system we

use to perform the workload analyses in Chapters 3, 4, and 5.

• Finally, Chapter 7 summarizes the contributions of this dissertation and concludes.

8

Chapter 2

Background and Related Work

This dissertation focuses on the characteristics of Web workloads that have a large impact on the

efficiency of Web content delivery to clients. In this chapter, Section 2.1 provides background in-

formation on the protocols and software components used for Web content delivery, and Section 2.2

investigates related research in the areas of Web workload collection and characterization.

In the background section, we provide an overview of the basic interactions between Web clients,

proxies, and servers. We begin with an overview of the HTTP transport protocol, including some of

the important differences between HTTP versions 1.0 and 1.1. We then introduce the basics of Web

caching and examine the reasons why some Web requests and responses are not cachable. Next, we

examine the explicit support for caching defined by the HTTP protocol specifications. We conclude

with an overview of the RTSP transport protocol used for delivering streaming media.

In the related research section of this chapter, our focus is on research that studies the perfor-

mance of Web caching. There are three key factors that make workload characteristics related to

Web caching the most widely studied aspects of Web workloads up to this point. First, the design of

algorithms for both Web proxy caching and cooperative Web proxy caching has been an extremely

active research area in recent years [Chankhuntod et al. 96, Zhang et al. 97, Touch 98, Fan et al. 98,

Karger et al. 99, Tewari et al. 99]. Second, a great deal of interest in caching systems for the Web

is due to the effectiveness of caching as a performance improvement technique in other areas of

computer systems, such as filesystems and CPU architecture. Third, Web caching and content dis-

tribution systems are the most widely deployed techniques used today to improve Web performance.

In order for proxy caching to be effective, the workload must have the following properties:

many of the requested documents were also requested at some point in the past; those documents did

not change in between the repeated accesses; and the caches were allowed to store those documents

in the first place. Therefore, we identified three workload properties that are most critical to the

overall effectiveness of Web caching – the cachability of Web documents, the rate of changes to

9

Web documents, and the extent of Web document reuse. In Sections 2.2.1 through 2.2.3, we cover

the related research on each of these three topics in detail.

We also investigate related research on three additional topics: cooperative Web proxy caching,

characteristics of streaming media traffic, and systems for collecting Web workloads.

2.1 Background

In this section, we provide background information needed to understand the basic interactions

between Web clients, proxies, and servers. We begin with an overview of the HTTP transport

protocols. We then introduce the basics of Web caching, and next we describe cookies, a mechanism

that allows Web servers to store persistent information at client browsers. We look at the many

different reasons why HTTP requests and responses may be uncachable. Next, we describe the

explicit support for caching in the HTTP protocol specifications. Finally, we present an overview of

the RTSP protocol which is used to deliver streaming media content.

2.1.1 The HTTP Protocols - 1.0 and 1.1

HTTP, the Hypertext Transfer Protocol, is the protocol that Web browsers, proxies, and servers

use to transfer most Web documents. The first officially standardized version of HTTP was called

HTTP 1.0 [Berners-Lee et al. 96]. HTTP 1.0 is a simple request-response protocol. The most recent

standard for HTTP is version 1.1 [Fielding et al. 99], which contains some significant enhancements

to HTTP 1.0. In this section, we provide an overview of the basic operation of HTTP and summarize

the key differences between the different versions.

HTTP is an application-level protocol, with protocol messages encoded in the human-readable

ASCII format. The message format for HTTP is based on the Multipurpose Internet Mail Ex-

tensions (MIME) specification. HTTP must be layered on top of a reliable byte-stream trans-

port protocol, and for current implementations this means TCP. Figure 2.1 shows an example

of the headers for a simple HTTP 1.0 style request and the corresponding response. In this

example, the method for the request is “GET”, and the URL of the image being fetched is

“http://s1.abcnews.go.com/ad/sponsors/news-120.gif”. The Web server responds with a document

whose content type is “image/gif” and whose size is 2869 bytes. For the request, there is no data that

10

� �

GET / ad / s p o n s o r s / news −120. g i f HTTP / 1 . 0
User−Agent : M o z i l l a / 4 . 7 [en] (WinNT ; U)
Host : s1 . abcnews . go . com
R e f e r e r : h t t p : / / abcnews . go . com / s e c t i o n s / b u s i n e s s / economy . h tml
Accept : image / g i f , image / x−xbi tmap , image / jpeg , image / png
Accept−Encoding : g z i p
Accept−Language : en

� �
� �

HTTP / 1 . 0 200 OK
S e r v e r : M i c r o s o f t−I I S / 4 . 0
Date : Mon , 28 Feb 2000 2 0 : 5 5 : 0 1 GMT
Conten t−Type : image / g i f
Las t−Modi f i ed : Thu , 24 Feb 2000 2 3 : 0 2 : 3 1 GMT
Conten t−Length : 2869

� �

Figure 2.1: An example HTTP request (top) and response (bottom).

follows the headers (though methods other than GET do sometimes have data), and for the response

the image data is sent immediately after the headers over the same TCP connection.

One of the most significant differences between HTTP 1.0 and HTTP 1.1 is the use of persistent

connections. In HTTP 1.0, the Web browser sets up a TCP connection to the Web server, and it sends

a single request over that connection. The server sends its response over that same connection, and

when the response is complete then the connection is closed. What appears to the user as a single

Web page usually consists of many embedded documents, such as images, frames, style sheets, and

Javascript code. Each embedded document is transferred over its own HTTP 1.0 TCP connection.

With HTTP 1.1, the browser may request more than one document over the same TCP connection, as

well as pipeline the requests rather than wait for each response before sending the next request. The

only constraint is that requests and responses do not contain sequence numbers, so the server must

send the responses in the same order that the client sent the requests. Either side of the connection

may terminate the persistent connection by attaching the “Connection: Close” header to a request

or response.

11

2.1.2 Caches for the Web

There are three widely deployed forms of caching in the Web today: (1) browser caches, (2) proxy

caches, and (3) content distribution network (CDN) caches. All popular Web browsers today support

both memory and disk-based caches. Most browsers allow users to control the amount of resources

allocated to the cache as well as the policy used by the cache to determine when to revalidate cached

documents. Browser caches handle Web document reuse by a single user.

A proxy cache is a network service for caching Web objects. Just as browser caches handle reuse

for a single user, proxy caches handle reuse for a group of users because they can be simultaneously

accessed and shared by many clients. The proxy cache acts as an intermediary between Web clients

and servers. Cache hits at a proxy provide the following potential benefits: reduced latency for

users browsing the Web, reduced load for the origin Web servers, and reduced network traffic for

the portion of the network between the proxy cache and the origin server. Misses at a proxy cache

can increase latency for users because of the additional cost of communicating with the proxy cache

before contacting the origin server.

CDN caches are similar to Web proxy caches. They are typically dedicated machines that serve

large groups of users, and they act as intermediaries between clients and servers. CDN caches also

differ from proxy caches in a number of ways. CDN caches only store the pages of sites that pay for

the content distribution service. Furthermore, the naming of documents at CDN caches is explicit

rather than implicit. For proxy caches, there is nothing specific about a URL that indicates the page

is being served by a proxy cache. For CDNs, the URL of each document served by a CDN contains

a hostname that is part of the CDN administrative domain rather than using the hostname of the

origin server. It is up to the CDN internally to decide how to determine what the origin server is and

how to contact it if necessary. The Internet Domain Name System (DNS) is a distributed naming

service used to translate hostnames into IP addresses. Since the DNS is used to locate CDN caches,

a commonly deployed trick in these networks is to dynamically map users to CDN caches based

on the current cache load or network conditions. By setting a short time-to-live value for the DNS

entry that maps the CDN cache name to an IP address, the CDN system can update that DNS entry

on a frequent basis to implement the dynamic mapping of users to CDN caches.

12

2.1.3 Cookies

Cookies are a general purpose state management mechanism for the Web. Cookies allow a server-

side Web application to store persistent information at the browser and later retrieve that information.

One use for cookies is to implement a shopping cart application. For this application, a cookie stores

a unique identifier for each user’s browsing session. This unique identifier provided by the cookie

maps directly to the user’s shopping cart. The user can then make multiple selections at different

Web pages in the online store, each of which gets placed in the shopping cart. At check-out time,

the cookie locates the shopping cart and then the application can determine the cost of all items in

the cart. Cookies are not mentioned in the HTTP 1.0 specification, but they were first defined and

implemented with Netscape V1.0 [Netscape 95]. According to the Netscape specification, requests

with a “Cookie” header should never be cached, and responses with a “Set-Cookie” header should

also not be cached. Cookies were later standardized in [Kristol et al. 97]. That specification requires

the use of the HTTP 1.1 “Cache-control” headers to control the behavior of proxy caches.

2.1.4 Uncachable Documents

In any caching system, there is a need to keep the cached copies of data consistent with the original

location of the data. When the data is modified, the caching system must ensure that all copies of the

data are updated in a timely manner. A caching system is said to maintain strong consistency if there

is no possibility that a client can ever see a stale copy of the data. The Web uses a weak consistency

model where there is the possibility that a Web cache may serve a stale copy of a document to clients

if that document has recently changed at the origin Web server.

The principal benefit of using a weak consistency model is better availability. If strong consis-

tency is used then one must ensure that a cached copy of a document is the most recent version

before allowing a client to read the cached document. If the origin server for that document is un-

available, then there is no way to perform that check. Many techniques have been developed to help

increase availability while maintaining strong consistency (e.g. locking, leases, and replication), but

fundamentally one can always provide higher availability with weak consistency.

Certain uses of the Web do not interact well with the weak consistency semantics of the Web. For

example, suppose the content of a Web page for an online store is computed by querying a product

13

inventory database. Without caching, a database query would run each time a client accesses that

URL. If a proxy cache stores that Web page, then the cache actually stores the results of a past

query to the database. There is a strong possibility that these results may be out of date. Web

documents such as the one in this example are commonly referred to as dynamic Web documents.

Because there are certain Web applications where caching simply gets in the way and does not

provide a performance benefit, both Web clients and Web servers provide mechanisms to bypass

intermediate Web caches. For Web clients, an uncachable request is one that must be passed along

to the origin server, even if an intermediate proxy cache has what it believes to be a valid copy of

the requested document. For Web servers, an uncachable response is one that should not be stored

at any intermediate proxy caches.

2.1.5 HTTP 1.0 Support for Caching

In HTTP 1.0, there are three features that support Web document caching. The “Pragma” header

is used to attach implementation specific directives that apply to any recipient in the request/re-

ply chain [Berners-Lee et al. 96]. The “no-cache” pragma explicitly defines that requests with this

header should only be handled by the origin server, whether or not any intermediary cache has the

requested document. As defined in the standard, this mechanism applies only to requests, so it does

not provide a mechanism for content providers to specify that their documents are dynamic and

should not be cached. In practice, however, most proxy caches support the “no-cache” pragma for

response messages as well as request messages.

Another explicit element of support for caching in HTTP 1.0 is the conditional “GET” method.

A GET request is conditional if the “If-Modified-Since” header is included with the request. The

semantics of a conditional GET allow the server to only transfer the requested document if it was

modified after the date specified in the “If-Modified-Since” header. The Web server attaches the

document modification time to the response with the “Last-Modified” header. Conditional requests

are sometimes referred to as cache validation requests because they can be used by caches to verify

that the copy of a document stored in the cache is still valid.

The final feature is the “Expires” header. This field specifies the date and time after which the

document should be considered stale, which implies that caches should either discard or revalidate

14

the document. The specification further defines an additional mechanism to prevent dynamic docu-

ments from being cached. If the server sets the time in the “Expires” header to be earlier than the

time in the “Date” header then recipients of that response must not cache the document.

2.1.6 HTTP 1.1 Support for Caching

HTTP 1.1 introduces more substantial support for proxy caches and eliminates many of the ambigu-

ous situations that arise when using a proxy cache with HTTP 1.0.

The most significant addition to the HTTP 1.1 specification is the “Cache-control” header. This

header supports a number of different mechanisms; browsers or servers can add this header allowing

either party to control the behavior of any intermediary caches. The “Cache-control” directives may

be used to accomplish any of the following tasks: to impose or eliminate restrictions on what is

cachable, to modify the default expiration mechanisms, to control cache revalidation strategies, and

to control document transformations. The controls also distinguish between private caches (browser

caches) and shared caches (proxy caches). Furthermore, the “Cache-control” directives may be

applied to individual header fields as well as to whole requests or responses. For example, this

feature is used to enable caching for documents that contain the “Set-Cookie” header, so that only

the “Set-Cookie” header field is excluded from the cache.

The conditional GET technique of HTTP 1.0 is extended to support entity tags (using the “If-

Match” or “If-None-Match” headers) in addition to dates (“If-Modified-Since” or the new “If-

Unmodified-Since”). An entity tag is a compact unique identifier for an object and is specified

with the “Etag” header. A typical implementation for entity tags is a document checksum. Fur-

thermore, the “If-Range” header changes a GET request to only fetch a portion of the document

rather than the entire document. This is useful when poor network connectivity leads to frequent

connection failures.

Although we typically think that the content of a document is uniquely specified by its URL, this

is in fact not the case. Both HTTP 1.0 and 1.1 include support for content negotiation with a set of

“Accept” headers that allow the browser to specify preferred languages, character sets or encodings

for the content. This behavior introduces difficulties for implementing caching that are not addressed

by HTTP 1.0, because potentially all documents could be using content negotiation. HTTP 1.1

15

introduces a new header field called “Vary” which must be added to a response whenever the server

uses additional request header fields to determine the content. “Vary” also informs the caches as to

which header fields determine the content. This allows caches to serve content negotiated documents

if those headers match in addition to the URL. Most current proxy cache implementations treat

responses with a “Vary” header as uncachable.

The HTTP 1.1 specification also provides guidance on how proxy caches should implement

weak cache consistency. It defines techniques to calculate the age of a document and it recommends

a heuristic for calculating the freshness lifetime for documents that do not specify explicit expiration

times. These heuristic freshness lifetimes cannot be used for documents that do not supply a “Last-

modified” header. HTTP 1.1 also requires that a cache must attach a warning header to any document

served from the cache where that document is more than 24 hours old and where the document’s

freshness lifetime is calculated heuristically. Finally, any other stale documents served from a cache

must also have a warning header attached.

2.1.7 RTSP: The Real-Time Streaming Protocol

In contrast with traditional Web pages, which are almost always delivered using HTTP, there is

no single protocol that is used to deliver all streaming-media content. Instead, a number of com-

mercial applications support a variety of standard and proprietary protocols. Given the diversity

of protocols in use, in this dissertation we focus on the standardized and well documented RTSP

protocol [Schulzrinne et al. 98]. RTSP is one of the most widely used streaming protocols. For

example, RealNetworks’ RealPlayer and Apple’s QuickTime Player are two widely used streaming

media client applications that support RTSP.

The RTSP protocol is used to setup and control the delivery of one or more continuous media

streams. Media objects are identified by an RTSP URL, with the prefix “rtsp:”. Conceptually, RTSP

distinguishes between control traffic and media-data traffic, and allows for control traffic and media-

data traffic to be sent over different channels. The protocol also allows for interleaving of control

traffic and media-data traffic on the same channel. For most RTSP implementations, the control

channel is layered on top of TCP, but the TCP congestion control algorithm can potentially get in

the way of low latency delivery of the media data. Therefore, most RTSP streaming-media servers

16

use UDP to deliver the continuous media data.

The RTSP protocol syntax uses the MIME header format in a manner very similar to HTTP,

although the operations supported by RTSP are different. Another key difference between RTSP

and HTTP is that RTSP is a stateful protocol, which means that RTSP servers must keep track of

the current state of each session. RTSP uses sequence numbers to match requests and responses.

In a typical sequence of interaction, an RTSP client sends a SETUP request to the server which

causes the server to allocate resources for the stream. When the server receives a PLAY request, it

begins to transmit the stream data. A PAUSE request halts the data transmission without freeing the

server resources, and a TEARDOWN request terminates the session and frees the server resources.

Although RTSP and HTTP are both request-response protocols, RTSP also differs from HTTP in

that both clients and servers can initiate requests. For example, an RTSP server can query a client

using the GET PARAMETER request to discover packet reception characteristics for the current

stream, such as packet loss rate or jitter.

2.2 Related Research

In this section, we summarize related research in the areas of Web workload collection and workload

characterization for Web caching. In Sections 2.2.1 through 2.2.3, we look at the three workload

characteristics that have the greatest impact on the effectiveness of Web caching systems. In Sec-

tions 2.2.4 through 2.2.6, we look at previous research in the areas of cooperative caching, streaming

media workloads, and passive network monitoring.

2.2.1 Cachability of Web Documents

Document cachability refers to the question of under what conditions a cache may store a given

Web document. In this section, we provide an overview of the research characterizing how often

and why Web documents are uncachable.

One of the earliest projects to point out many of the interesting deployment issues for Web

caching was the Harvest system [Chankhuntod et al. 96]. Their paper demonstrated that deploying

caches for Web traffic during the 1994 and 1995 time-frame was difficult because there was no

standard for specifying objects as uncachable. Harvest used string matching on the URL name to

17

detect uncachable CGI scripts. They also showed that HTTP content negotiation effectively makes

the deployment of correctly behaving transparent caches impossible. The problem is that Web

servers may use the request header contents to compute the HTTP response, so a correct Web cache

must match all HTTP request headers in addition to the URL in order to get a cache hit. The frequent

usage of optional fields in the HTTP request headers, such as the user-agent field, would lead to a

cache hit rate of close to zero with this policy. The Harvest solution was to completely avoid the

header comparisons, which lead to the possibility that a Harvest cache could return incorrect data

from when content negotiation was used.

[Gribble et al. 97] collected network traces of Web traffic from the modem pool at the University

of California Berkeley for a 45 day period during October and November of 1996. During this time

period, they collected a trace containing 24 million requests generated by 8,000 unique clients.

The authors looked at whether requested Web content was cachable by examining the usage of the

“Cache-control” and “Pragma” headers, and found that 7% of requests were specified as uncachable

and less than 1% of responses were uncachable. They also found that only 2% of responses were

CGI responses. Based on those numbers, they concluded that Internet services could benefit strongly

from caching. The authors did not report on the usage of cookies in their workload, as will be

discussed later.

The [Manley et al. 97] study collected server logs from ten different Web sites. Most of the

logs were collected in the late 1996 and early 1997 time-frame, though some go back as early as

1994. These ten server sites were quite diverse in terms of their purpose and usage. There were

three academic sites, five business sites, and two institutional sites. One of many workload aspects

covered in this study was the amount of CGI usage at each site, because the authors were concerned

about the server overhead of CGI processing. Most deployed proxies at the time scanned the URL

for CGI or the query character and considered those pages uncachable.

The authors found that, in contrast with popular belief at the time, the usage of CGI was small

and did not appear to be increasing. Only three of the ten sites found that more than 2% of all their

requests were CGI requests, and only the professional organization site (at 34%) saw more than

10%. The most widely used CGI script among the sites surveyed was a page counter. In addition to

the relatively small overall usage, the ratio of CGI traffic to regular traffic did not grow during the

measurement intervals.

18

In 1998, we begin to see a different trend emerge. The [Caceres et al. 98] study collected net-

work traces from the AT&T WorldNet ISP for a 12 day period in August of 1997. The authors

pointed out that the conclusion of the [Gribble et al. 97] study was flawed because they did not con-

sider cookies as a reason that certain resources might be uncachable. They found that 30% of the

requests were uncachable due to cookies, and this resulted in a 20% decrease in the overall cache

hit rates for their simulated proxy cache. The Squid proxy cache, derived from the earlier Harvest

project, is currently the most popular freely available proxy cache. Squid does allow caching of re-

quests that contain cookies, even though that policy conflicts with the original Netscape cookie spec-

ification. The draft cookie standard [Kristol et al. 97] makes it clear that the HTTP “Cache-control”

headers must be used to control caching behavior, and therefore requests that contain cookies can be

cached unless a “Cache-control” header states otherwise. This Squid caching policy directly con-

flicts with the authors conclusion that cookies are a significant factor that prevents caching of Web

resources. [Feldmann et al. 99] performed a followup to the [Caceres et al. 98] study, and showed

that including the requests with cookies, the overall rates of uncachability were 43% for the ISP

trace and 37% for a trace of the AT&T Labs research community from 1997.

In [Wills et al. 99b], the authors used synthetic Web requests to investigate the cachability of

resources from popular sites. They used site popularity information from 100hot.com to construct

five sets of sites to probe. The pages queried from each site were the entry pages and the set

of pages directly linked from the entry page. For each page, they downloaded all the embedded

documents. They looked at the percentages of uncachable documents due to “Cache-control” and

“Pragma” headers, and found that four of the five sets had a rate of uncachability less than 5%. The

second commercial set had 17% of its documents uncachable. They also showed the percentage of

documents that were uncachable because they were pre-expired, but these results were not listed as

an overall rate. They were only listed broken down by content type, and the percentages appeared

to be very small (less than 2%).

Since this study generated requests from outside of a Web browser, the authors could not report

the percentage of requests that contained a cookie because none of their requests contained a cookie.

They did report the percentage of responses that contained a “Set-cookie” header, and showed that

it ranged from 10% to 17% for all but the educational set. One problem with interpreting this rate

is that they fetched a high proportion of entry pages, which is the one place where cookies would

19

most likely be assigned for the entire site. The authors also examined whether or not resources

changed based on cookies in order to decide whether or not requests that contained cookies ought

to be declared cachable. They limited their test set to those pages from the first commercial set

that returned a “Set-cookie” header. They accessed the pages twice and recorded the two different

assigned cookies. They later re-accessed the site using the two different cookies to see if the content

changed based on the cookie value. In 94% of the cases, the resource returned was identical, and

they determined by manual examination that when the resource changed it was caused by banner

advertisement rotation. They concluded that requests with cookies could be cached, and in most

cases the cached content could be reused. One problem with this methodology is that cookies are

often used to create personalized content at Web sites. Customizing the appearance of a page might

require specific user actions, yet their methodology would not generate this customization behavior.

Therefore, the reported 94% figure may be a significantly inflated estimate of how often different

cookie values return the same content.

In [Wills et al. 99a], the authors performed a similar study but they constructed the set of pages

to query from a proxy log rather than from the 100hot.com list. This page set was constructed from

highly accessed documents in the NLANR proxy logs of December 1998 and January 1999. The

advantage of this approach was that they examined those pages within a site that real users were

accessing, while the disadvantage was that it made the results more dependent on the specific users

of that proxy. The overall conclusions for this paper were very similar to the previous paper. The

overall rate of uncachability from “Cache-control” and “Pragma” headers ranged from 4% to 12%.

The percentage of pre-expired pages was in the 3% range, and the “Set-cookie” percentages ranged

from 9% to 31%.

In this dissertation, we investigate the issue of uncachable documents based on a one week trace

from the University of Washington (UW) population during May of 1999. Our trace contains 83

million requests from 23,000 clients. As with the [Caceres et al. 98, Feldmann et al. 99] studies,

we see overall rates of uncachability that are much higher than previous studies. One key differ-

ence between our study and the [Caceres et al. 98, Feldmann et al. 99] studies is that we base our

cachability decision on the Squid proxy cache implementation, which means that we do not consider

requests containing a cookie to be uncachable. If we had, our rates for uncachability would be even

higher. We enumerate ten possible protocol reasons for Web documents to be uncachable. When

20

combining all ten reasons, we find that 40% of all requests in our one week trace are uncachable.

We also analyze one week of proxy logs from the Microsoft campus during the same May 1999

time period, and we find an even higher overall rate of uncachability at 49%. We do not know what

the Microsoft proxy cache policy was for dealing with cookies.

Discussion

The conclusion one draws about the cachability of Web documents appears to be very much de-

pendent upon the time at which the workloads being studied are collected. We have seen a signif-

icant shift: early studies up to the 1996 time frame showed a very small percentage of uncachable

documents; whereas more recent studies including our own showed a much higher percentage of

uncachable documents. Further study will be needed to see if the rates level out or go down in the

future. Because HTTP 1.1 includes specific support for proxy caching, many of the issues of am-

biguity in these workload studies, such as how to handle cookies, will be resolved once HTTP 1.0

usage fades away. A number of research proposals have been made to alleviate the problem of high

rates of access to uncachable documents. These proposals are designed to allow limited caching of

dynamic documents[Douglis et al. 97c, Cao et al. 98, Smith et al. 99], but as of this writing none of

these techniques have been substantially deployed.

2.2.2 The Rate of Change to Web Documents

In this section, we look at issues related to how quickly Web documents change. Given a set of Web

documents that are potentially cachable, the rate of change to those documents will be a limiting

factor on the potential cache hit rates. In other words, a fast rate of change leads to a limited time

period during which document reuse will cause a cache hit. Much of the early work looking at

Web document rate of change investigated the design of cache consistency techniques for the Web.

Recently there has been more focus on the detailed characteristics of how frequently documents

change, and to what extent they change.

21

Cache Consistency

The Web does not support a strong cache consistency model where users always see the most recent

version of a document. Instead, the Web uses explicit document expirations and time-to-live (TTL)

heuristics. As part of the Harvest project, [Worrell 94] investigated using a hierarchical invalidation

model for cache consistency. In order to decide whether or not invalidation-based consistency was

needed, the author studied Web workloads to look at the predictability of object lifetimes. The main

finding of this work was that object lifetimes were not easy to predict, implying that making TTL

heuristics accurate would be very difficult.

The author generated synthetic Web requests in an adaptive manner to look at object lifetimes.

The URLs in the test set were generated from users’ history files, Web indices, and Harvest caches.

The test set contained approximately 5000 URLs for which the object lifetime could be estimated,

and was collected in the fall of 1994. The generated requests were adaptive: when the “Last-

modified” headers detected a document change, the probe interval was shortened to better estimate

the rate, and when no change was detected the probe interval was lengthened. The results of the

study showed a large range of object lifetimes. Even for a single object, the time between changes

varied considerably. Over 42% of the objects exhibited some variance in document lifetimes, and

documents that changed quickly had smaller variances while documents that changed slowly had

larger variances. The mean lifetime was 44 days for all objects, 75 days for HTML objects, and

107 days for images. The authors concluded that predicting object lifetimes is a very difficult task,

and this increases the chance that TTL heuristics will be inaccurate. The consequence of inaccurate

heuristics is that caches may return stale data to users unless lifetimes are chosen very conservatively

which would generate extra cache validation traffic. In conclusion, the authors showed that an

invalidation-based consistency scheme would be appropriate for the Web because at the break-even

point in terms of bandwidth consumption, the fixed TTL mechanism returns stale documents 20%

of the time.

[Gwertzman et al. 96] performed another study of cache consistency approaches for the Web,

extending the simulator built by [Worrell 94]. This study used three server logs collected from

different servers at Harvard University over a one month period during 1995, and they generated

last-modification times from the file system. In their traces, they observed that the most popular

22

files change less often than the unpopular files. Their study also used data collected from a Boston

University server over a 186 day period to look at object lifetimes. This data showed mean object

lifetimes of 50 days for HTML documents and 85 to 100 days for the different image types.

Using simulation, they compared a fixed TTL algorithm such as Harvest’s with invalidation pro-

tocols and with an adaptive polling algorithm. They conclude that the adaptive polling algorithm

performs the best. Their polling algorithm is based on the Alex FTP cache [Cate 92]. The polling

algorithm uses an update threshold to decide when to poll the server. The update threshold is cal-

culated as a fixed percentage of the document’s age. For example, if the threshold is 10%, and a

given document has an age of 10 days, then the cache will poll the server to revalidate the document

after 1 day. This algorithm forms the basis for the heuristic described in the HTTP 1.1 specification,

except that the heuristic only determines the TTL value and does not suggest that proxies should

poll the server when the freshness lifetime expires.

[Cao et al. 97] compared the adaptive TTL algorithm with two variants of strong consistency:

polling every time and invalidation. They used five server traces from commercial sites, govern-

ment organizations, and universities to evaluate the algorithms. The traces did not contain “Last-

modified” headers; instead, they generated synthetic modification patterns that followed the distri-

butions observed in [Gwertzman et al. 96]. They concluded that invalidation can be implemented

with network overhead comparable to the adaptive TTL algorithm, and they claimed that the behav-

ior with respect to failures was acceptable. We suspect that the current failure characteristics of the

Internet will prevent invalidation systems from being seriously considered for quite some time.

[Duska et al. 97] used a set of seven proxy traces to investigate how often proxy caches need to

validate expired objects in their caches, and the percentage of time those revalidations do not detect

a change. Their trace set included a large 1996 proxy trace from DEC, four university traces, the

NLANR second-level proxy cache traces, and a national trace from Korea. They found that the

percentage of revalidations of unchanged objects ranged from 2% to 7%, and this represents the

inefficiency of the coherence protocol.

[Krishnamurthy et al. 97] described using piggyback cache validation to improve cache consis-

tency for the Web. When a proxy cache needs to contact a server to fetch a page, the cache can

piggyback a set of validation requests onto the page request. Their proposal suggested that the pig-

gybacked validation requests should be generated for those pages in the cache where the TTL has

23

expired and the page originates from the server being contacted. The benefit is that this eliminates

the latency penalty for separate conditional GET requests. The reduction in message traffic there-

fore allows the heuristic TTL values to be set more conservatively, which in turn reduces the chance

that stale pages will be served by the cache. This study used a 1996 proxy log trace from DEC and a

1996 packet trace from AT&T Research to compare their proposal with the adaptive TTL algorithm.

They found that piggyback validation reduced the number of messages to the server by 17%, and

reduced their cost metric (which combines the effects of latency and bandwidth) by 6%.

[Padmanabhan et al. 00] also investigated the effectives of adaptive TTL estimation, using server

logs collected from an active news Web site, the MSNBC Web site. They collected a series of traces

from 1998 and the fall of 1999. They looked at the correlation between their prediction based on N

previous samples of the modification interval and the actual modification interval. They also looked

at the accuracy of the prediction in terms of the error percentage. The results showed that with

enough history (at least 15 samples), the coefficient of correlation was good, but the accuracy was

not. However, they did find that 90% of their predictions were within 400% of the real modification

interval, so they concluded that rough estimation is possible using adaptive TTL.

Change Characteristics

In this section, we take a closer look at the specifics of how frequently documents change and to what

extent they change. Understanding the change characteristics of cachable documents is important

because of the direct impact on cache hit rates. Understanding the rate of change for uncachable

documents may help in the design of systems for caching dynamic documents.

[Douglis et al. 97a, Douglis et al. 97b] performed the most extensive study to date on the rate of

change characteristics of Web documents. As with the [Krishnamurthy et al. 97] study, they used

traces from AT&T and DEC collected in late 1996. They investigated the relationship between

the rate of change to documents and other document characteristics such as content type, access

rate, and size. The authors found that contrary to previous server log studies [Gwertzman et al. 96],

the more popular documents in their traces were also the documents that changed more frequently.

They found that the content type of a document did effect the frequency of changes, and that HTML

documents changed more frequently than images. They found that the size of a document did not

24

affect the rate of change. They also investigated another issue related to document change, namely

how often they discovered identical content with different names. This effect could be caused by

document name changes, by site mirroring, or by encoding session-ids inside the URL. In the AT&T

trace, they found that 18% of the responses had identical content to at least one instance of a different

URL.

Using the same data, [Mogul et al. 97] investigated the benefits of delta encoding and data com-

pression for the Web. When a conditional GET request determines that a cached document has in

fact changed, delta encoding allows the server to just send the changes to that document rather than

the entire document. Their delta encoding experiments used the vdelta algorithm [Hunt et al. 96],

and their compression experiments used both vdelta and gzip [Deutsch 96]. One key finding was that

when the headers implied that the document had changed, frequently the content had not changed.

For the DEC and AT&T workloads, 21% and 32% respectively of the delta-eligible references were

completely unchanged. They also found that when documents did change, the extent of the changes

was small and therefore delta-encoding was very effective at reducing the number of bytes trans-

ferred. For the DEC proxy traces which were filtered to eliminate binary content, they found that

the vdelta approach reduced the bandwidth requirements by 83% for the delta-eligible responses

and by 31% for all status OK responses. For the AT&T traces which included all content types, they

found that vdelta reduced the bandwidth by 85% for delta-eligible responses, but only 9% for all

status OK responses. The final result was that simply compressing all document transfers cut the

bandwidth requirements by 39% (DEC) and 20% (AT&T). They also investigated the host overhead

of calculating the deltas at the server and applying the deltas at the proxy. They drew the conclusion

that delta-encoding was effective, but they did not consider the additional storage overhead required

at the server to allow the delta calculations.

[Wills et al. 99b] and [Wills et al. 99a] generated synthetic Web requests to popular Web sites

to examine many similar issues. They fetched pages in their study only once per day, which

placed limitations on their ability to detect very fast rates of change. They found results similar

to [Douglis et al. 97a] in that HTML documents changed more frequently than images. They also

saw significant variation in HTML change rates based on the different test sets they looked at. For

instance, for the commercial sets, 70% to 80% of the pages changed on each retrieval, whereas for

the educational set more than 60% of the pages did not change at all. They found significant prob-

25

lems with use of the HTTP cache validation mechanisms such as the “Etag” and “Last-Modified”

headers. For both of these validation mechanisms, there are cases when the validator informs the

cache that the document has changed, yet the content comparison shows that the document has not

changed. For the com2 test set, this happened 9% of the time with the “Last-modified” header,

and 37% of the time with the “Etag” header. Another significant problem was missing validation

headers. For the proxy generated cnt20 test set, 37% of the time the “Last-modified” header was

unavailable and the document did not change. A missing “Last-modified” header prevents a a cache

from using heuristic expiration, and because the documents did not change it is likely that these

responses would have lead to cache hits had they included the“Last-modified” header. Finally, they

looked at the relationship between container pages and embedded images. When the container page

changed, most of their test sets showed that more than 50% of the embedded images remained in

the new version of the container document.

[Warren et al. 99] used weekly site snapshots to look at the evolution of the content of a set of

Web sites over time. Though much of their focus was on the link structure of HTML pages, they

observed that the rate of change on a given Web site appeared to be dependent on the total number of

documents served by that site, with smaller sites having fewer changes. They also observed that for

individual pages, the higher density of outgoing links that a page had, the higher the rate of change.

In our own work [Wolman et al. 99b] not included in this dissertation, we looked at document

rate of change based solely on the HTTP header information, since our UW trace did not calculate

document checksums which would allow verification of the changes. Our main contribution with

respect to rate of change was to show that uncachable documents changed at a significantly higher

rate than cachable documents. We also confirmed previous results that showed popular documents

changed faster than unpopular documents. The hit rates estimates from our analytic model of the be-

havior of large-scale caching systems were quite sensitive to the change characteristics of unpopular

documents, so we think more extensive information is needed in this area.

[Padmanabhan et al. 00] used server logs from a busy commercial Web site, the MSNBC site,

to look at document rate of change from the server perspective. Most of the rate of change results

were based on one week during October of 1999. One limitation arose from the fact that the site

was actually a cluster of 40 machines, and the updates to documents were made using the Microsoft

Content Replication System (CRS). Therefore, the information about document changes was gath-

26

ered from CRS logs, rather than directly from the filesystem. There were two key limitations of this

technique: one cannot distinguish between modification and creation events, and one cannot record

the filesystem last modification times before a change, which means that one can only determine

modification intervals for files that change at least twice during the trace period. This also limited

the maximum change interval to the trace period.

The results showed that during the week there were 29,000 modification events of which their

heuristics estimated that 23,000 were file modifications and 6,000 were file creations. The modi-

fications were made to 2,400 unique files during the week, or an average of 10 modifications per

file. Further examination showed that most of these modifications were made to only a small set of

files. Only 1% of the modifications were to images, and those were mostly changes to image maps.

They found that 90% of the modification intervals fell between one hour and one day. They also

found that with the vdelta algorithm, the extent of the changes to HTML files was very small. For

77% of the modifications, the delta size was less than 1% of the original file size, and for 96% of

the modifications, the delta size was less than 10% of the original file size. Many of the very small

changes were updates to either the date and time or to links.

Discussion

When looking at Web cache consistency mechanisms, we saw that estimating document lifetimes

accurately is difficult. The adaptive TTL approach specified by HTTP 1.1 trades off extra validation

traffic to reduce the chance of stale documents. We also saw that the current approach to Web cache

consistency leads to a significant number of unnecessary document transfers due to inaccurate or

missing header information. Of the research proposals for improving cache consistency, piggyback

validation seems the most promising due to the relative ease of deployment.

In terms of Web document change characteristics, we saw a number of trends. Early studies

showed that popular documents changed less frequently that unpopular documents, but all the stud-

ies since 1997 show just the opposite. The most popular Web documents appear to change at a faster

rate than the unpopular documents. Different content types exhibit different change characteristics,

and in particular HTML documents appear to change at a faster rate than images. When documents

do change, the extent of the changes is often small, and delta encoding appears to be a very effective

27

technique to reduce bandwidth requirements for transferring those changes. However, deployment

of delta-encoding may be controversial due to the extra burdens it places on Web servers.

2.2.3 Document Sharing

In this section, we look at the locality properties of Web workloads. In particular, we examine the

amount of document reuse among clients, and the amount of temporal and geographical locality in

the workloads. We then examine the popularity distribution of documents, and the implications of

that distribution for modeling the effectiveness of large-scale Web caching.

Reuse and Locality

We first investigate the experimental results that look at the relationship between cache hit rates and

client population size. We then summarize studies that look at geographical and temporal locality.

One of the earliest studies to look at the effectiveness of Web caching was [Glassman 94]. Their

study was based on 12 weeks of proxy logs for the internal client population at DEC. They found

that on a daily basis, the cache hit rates varied from 30% to 50% of all requests. For the full time

period, approximately 1/3 of all requests were for pages that had never been requested, 1/3 of all

requests were hits, and 1/3 of all requests were for previously requested documents that had expired.

[Gribble et al. 97] traced Web traffic from the modem pool at Berkeley for a month and a half in

late 1996. Their simulations showed a peak cache hit rate of approximately 55% for the entire time

period. Furthermore, the authors investigated the relationship between cache hit rates and the size

of the client population. They found that the asymptotic hit rate grew logarithmically with the client

population size, at least over the range of populations observable within their trace.

[Kroeger et al. 97] used the three week DEC trace from 1996 to analyze cache hit rates, and

found that an upper bound on the cache hit rate for a proxy cache with unlimited storage would be

52% over the entire three week period.

[Duska et al. 97] used a set of seven proxy traces to investigate the relationship between cache

hit rates, request rates, and population sizes. With their cache simulator, the peak hit rate for the

DEC trace was 42%, which conflicts with the 52% reported in [Kroeger et al. 97]. One possible

explanation for this discrepancy is how the cache simulator handled validation hits. The Squid

28

proxy cache implementation considers a cache hit to be any document whose body is served from

the cache, regardless of whether or not a cache validation message was sent to the server before the

cache served the document. It is clear that the [Duska et al. 97] paper did not consider these to be

cache hits, but it is possible that the [Kroeger et al. 97] study did. The results of the [Duska et al. 97]

study also showed that hit rates grew with both request rates and increases in client population size.

For their workloads it appeared that growth in request-rate was a better predictor for cache hit rates

than growth in client population size.

In this dissertation, we use workloads from UW and Microsoft to investigate the relationship

between client population size and ideal proxy cache hit rates. Ideal hit rates are defined as an

upper bound that ignores document expirations and uncachable documents. We find that for both

populations, the ideal hit rates grow logarithmically with the client population sizes. We use these

results to evaluate the effectiveness of cooperative caching across large populations, and we find that

combining the two large populations from our traces only leads to a small increase in ideal hit rates.

We now examine the work that has investigated geographical and organizational sharing in Web

workloads. The first study to investigate these issues was [Gwertzman et al. 95]. Using server

traces from Harvard and NCSA, they found that only a small percentage of documents at a given

site were extremely popular. They plotted the geographical location of the client subnets that made

frequent requests to their two servers. They calculated geographic location based on the zip code

of the administrative entity responsible for the subnet. They performed a clustering analysis on this

data and determined that there were 22 clusters of subnets spread across the United States for the

NCSA server, while there were only 4 clusters, two on each coast, for the Harvard server. They

concluded from this data that site mirroring would be inefficient and that their results motivate

distance-sensitive caching.

[Duska et al. 97] also examined geographic locality, but in a very different manner. The seven

different traces in their study each represented a distinct collection of users, so they analyzed the

sharing across the different user populations. Unfortunately, their largest trace from DEC was ex-

cluded from this portion of the study because the URLs were anonymized. The authors found that

only a very small portion (0.2%) of the objects were shared across all six traces, but those shared

objects were extremely popular and accounted for 16% of all the requests. 18% of the objects

were shared by at least two traces, and these objects accounted for 56% of all the requests. They

29

characterized objects as either narrowly shared or widely shared and looked at the percentage of ac-

cesses to each. The widely shared objects tended to be the only ones that were shared across traces.

They concluded that sharing is bimodal because half of the shared accesses in a trace were made to

narrowly shared objects and half to widely shared objects.

In this dissertation, we examine organization-based sharing, which is a form of geographic shar-

ing. For every client access in our trace from UW, we record the client’s University organization.

This allows us to investigate whether members of the same organization are more likely to share

objects than members of different organizations. We answer this question by comparing the amount

of sharing within the University organizations to the amount of sharing in randomly constructed

organizations of the same size. We find that the amount of sharing in the University organizations is

more than in the random organizations, but that this effect is not a strong one because the percentage

increases are quite small.

[Padmanabhan et al. 00] performed a similar experiment on their server traces, but with the key

difference that their organizations were formed by using the DNS level-two domain name (e.g. cnn

from the name “www.cnn.com”). Since their trace was collected at a Web server, their organizations

covered a much larger overall population, but the opportunity for local sharing was less since they

only analyzed accesses to a single site. On normal days, the amount of sharing within a domain was

significantly greater when compared with the random assignment. This effect appears to be stronger

in their traces than in our study. However, on the day of an unusual event of global interest, they

found that the amount of sharing within domains matched the amount of sharing with the random

assignment, implying that the organizational locality effect was overwhelmed by these extremely

“hot” events.

There has also been some study of temporal locality in Web workloads. [Almeida et al. 96]

used the concept of stack distance to measure the amount of temporal locality in their workloads.

The stack distance measures the number of intervening references in between two references to the

same object. Their trace had a significant amount of temporal locality, when comparing the stack

distances measured in their trace with the stack distances measured when they randomly reordered

their trace. Furthermore, they showed that a log-normal distribution provides a reasonable model

for the distribution of stack distances.

[Padmanabhan et al. 00] looked at temporal locality by examining the stability of document

30

popularity over time. They examined the percentage overlap of the most popular documents during

different days of their traces. They found that the overlap remained quite high (in the 60% range),

not only between adjacent days, but also between days that were almost one week apart. They

concluded that a week-old trace is almost as good as a trace from yesterday for predicting which

documents will be popular today. However, they did find a significant drop-off in the overlap when

using traces that were three months apart or a year apart to make that same prediction.

Document Popularity and Zipf’s Law

The document popularity distribution is a function that ranks the access frequency of documents.

George Zipf, a professor of linguistics at Harvard, published a book in 1949 that showed a

large number of examples from social and economic data where the relationship between rank and

frequency followed a particular distribution [Zipf 49]. In particular, he observed that the frequency

of some event, as a function of the rank i of that event, is proportional to 1/iα, where α is a

constant close to one. This became known as Zipf’s law, and probability distributions that follow

this formula are often referred to as Zipf-like even when α is not equal to one [Breslau et al. 99]. The

most famous example of Zipf’s law comes from examining the frequency of words in the English

language. Zipf showed the distribution by analyzing word frequencies from the 260,000 words of

James Joyce’s book Ulysses. Zipf assumed that the frequent occurrence of this distribution reflected

some universal property of the human mind, and came up with an explanation he called the principle

of least effort. At the time, there was a great deal of controversy over this explanation, but today it

is commonly accepted that for both English texts and random texts, the cause of Zipf’s law is purely

statistical [Li 92].

[Glassman 94] was the first to observe the Zipf distribution for Web traffic patterns. They ana-

lyzed the 12 weeks of proxy logs from the DEC client population. On a log-log scale, they plotted

the number of accesses versus the page rank for all the requests in their logs, and compared the

results with the original Zipf distribution where α = 1. They found that their distribution was simi-

lar, though not identical to the Zipf distribution. They then described how the Zipf distribution can

predict an upper bound for cache hit rates if you have an estimate for the total number of documents

on the Web. They also showed the reverse: if you observe a given proxy cache hit rate, you can use

31

that to create a rough estimate for the total number of documents on the Web.

[Cunha et al. 95] instrumented a version of the Mosaic Web browser to collect traces from a set

of 40 machines in the Boston University Computer Science department. The traces were collected

from late 1994 to mid 1995, and they observed 575,000 requests to 47,000 unique URLs. The

authors found that their trace data followed a Zipf distribution, and they calculated the α parameter

to be 0.986. Note that this trace included documents that were handled by the browser cache, and

this affects the value of α when compared to traces from proxy caches which do not contain the

accesses filtered by the browser caches. [Almeida et al. 96] examined 2 weeks of server logs in

October of 1995 from the Boston University Computer Science department, and found that these

requests followed a Zipf-like distribution with an α parameter of 0.85.

[Breslau et al. 99] examined a wide set of traces in an attempt to conclusively answer whether

or not Web requests followed a Zipf-like distribution. The traces analyzed include one week of the

widely studied 1996 DEC trace, 18 days of the 1996 Berkeley modem pool trace, part of a three

month trace in 1997 from the University of Pisa, one day of traces from the NLANR second-level

squid proxy caches in late 1997, one week of traces from a second-level proxy cache at Questnet

in Australia in early 1998, and a ten day trace in mid 1998 of the FuNet proxies serving academic

communities in Finland. All six traces were found to have a Zipf-like distribution, with the α

parameters ranging from 0.64 to 0.83. The authors developed a model for estimating cache hit rates

based on independent requests that follow a Zipf-like distribution. With this model, they showed

that hit rates grow logarithmically as a function of the number of requests, which was consistent

with the experimental observations. In other words, the results from the previous section which

showed that cache hit rates grow logarithmically with respect to client population size are a direct

consequence of the Zipf-like popularity distribution. They also used their model to evaluate four

different cache replacement policies. They found that a least-frequently-used replacement policy is

best for byte hit rates, and a document size conscious policy that favors smaller documents is best

for overall hit rates.

In this dissertation, we study two traces that are an order of magnitude larger than those studied

in [Breslau et al. 99], and we find that the popularity distributions are both Zipf-like, with an α

parameter of 0.8.

[Padmanabhan et al. 00] examined the popularity distribution in server traces from the busy

32

MSNBC Web site. They also found that their server logs followed a Zipf-like distribution. When

calculated on a daily basis, α ranged from 1.397 up to 1.816 for all of the days traced. They noted

that the highest observed value of α was on December 17th, 1998. On this day there was an un-

usual event of global interest, namely a United States air-strike on Iraq. Since a higher value of

α corresponds to a greater percentage of requests to the most popular documents, this result is

not surprising in retrospect. The values of α in their server traces were significantly higher than

those values observed in recent proxy traces. They provided some simple mathematical analysis

to show that it is not surprising that proxy logs show lower values of α than server logs. They

showed that if we take s popular servers, each of which has the same α value and the same num-

ber of documents n, and we combine the access logs for those servers to create a proxy log, then

αproxy = αserver ∗(log(n)/log(s∗n)). Because the ratio log(n)/log(s∗n) is less than 1, the proxy

will always have a lower α value than the individual servers.

[Huberman et al. 98] created a model for how users surf a given Web site. Their model is based

on the idea that users make a sequence of decisions while accessing pages at a site. The decision to

proceed to the next page is made as long as the value of the current page exceeds a certain threshold.

This model yields a probability distribution for the number of pages visited by a user at a given site.

This model is then combined with a spreading activation algorithm [Shrager et al. 87] to predict

the number of hits at individual pages. The authors used this technique on randomly constructed

Web sites, using a variety of initial conditions, to show that the resulting probability distribution of

the page accesses over the total set of pages followed a Zipf distribution. Therefore, their value-

threshold model provided a direct explanation for the occurrence of the Zipf-like distributions in

Web proxy and server logs.

Discussion

It is clear from experimental measurements of cache hit rates and from analytic modeling results that

the Zipf-like popularity distribution is a limiting factor for the overall effectiveness of Web caching

and content distribution. The Zipf-like behavior in proxy and server logs appears to be the most

consistent pattern throughout all of the caching related Web workload characteristics we looked at.

We also saw a number of studies that found noticeable effects in terms of both geographical and

33

temporal locality, but these effects do not appear to dominate the large scale caching behavior of

Web workloads.

2.2.4 Cooperative Caching

There has been extensive work on cooperative Web caching as a technique to reduce access latency

and bandwidth consumption. Cooperative Web caching proposals include hierarchical schemes

such as Harvest and Squid [Chankhuntod et al. 96, Squid 01], hash-based schemes [Karger et al. 99,

Valloppillil et al. 98], directory-based schemes [Fan et al. 98, Tewari et al. 99], and multicast-based

schemes [Michel et al. 98, Touch 98]. Although each of these research efforts included a per-

formance evaluation of the protocols proposed and a discussion of algorithm scalability, only

[Krishnan et al. 98] presented empirical evaluations of cooperation for small populations, and none

presented empirical or analytical evaluations of the effectiveness of their schemes for the large client

populations found in a wide-area setting.

For infinite-sized caches, it has been shown empirically and analytically that the hit ratio for a

Web proxy grows logarithmically with the client population of the proxy and the number of requests

seen by the proxy [Breslau et al. 99, Cao et al. 97, Duska et al. 97, Gribble et al. 97].

Using client traces, [Krishnan et al. 98] studied the utility of cooperation among three Bell Labs

proxies with a small user population. They concluded that cooperative Web caching can be useful,

but that a cache manager was necessary to dynamically determine when to cooperate because of the

extra server load imposed by cooperation.

This dissertation expands on these previous research efforts. We use trace-based analysis to

quantify the potential advantages and drawbacks of inter-proxy cooperation for small- and medium-

size organizations.

In our own work not included in this dissertation, we used analytic modeling to examine

cooperative-caching performance in wide-area environments. We extended the analytic model from

[Breslau et al. 99] to include document rate of change parameters and to look at the behavior of

caches in steady-state, rather than the behavior from a finite request sequence. We used the model

to evaluate the benefits of large scale cooperative caching in terms of hit rate, latency, and storage

costs. The results of our analytic modeling confirmed our trace-based results. We found that most

34

of the benefits of cooperative caching can be obtained at relatively small population sizes (e.g. a

medium-size city).

[Gadde et al. 00] used the Zipf-based caching model from [Wolman et al. 99b] to investigate the

effectiveness of content distribution networks such as Akamai. They found that although interior

caches may yield good local hit ratios, they contributed little to the effectiveness of the caching

system as a whole, as long as the populations served by the leaf caches were reasonably large.

[Dykes et al. 02] used analytic modeling to investigate the benefits of cooperative proxy caching

on user response time, in contrast with previous studies that focused primarily on hit rates. They

found that cooperation offered at best a small improvement in user response times, but that the

primary benefit of cooperation was to reduce the variation in response times and eliminate very long

delays.

Finally, much of the work examining document reuse and locality described in Section 2.2.3 is

relevant not only to traditional Web proxy caching, but also to understanding the effectiveness of

cooperative Web proxy caching.

2.2.5 Streaming Media Workloads

While Web client workloads have been studied extensively [Almeida et al. 96, Duska et al. 97,

Gribble et al. 97, Feldmann et al. 99, Wills et al. 99b], relatively little research has been done on

multimedia traffic analysis. Acharya et al. [Acharya et al. 98] analyzed video files stored on Web

servers to characterize non-streaming multimedia content on the Internet. Their study showed that

these files had a median size of 1.1 MB and most of them contained short videos (< 45 seconds).

However, these results were based upon static analysis of the stored content, and thus ignored the

issue of how often that content is accessed by Web clients.

Mena et al. [Mena et al. 00] analyzed streaming audio traffic using traces collected from a set

of servers at Broadcast.com, a major Internet audio site. The focus of their study was on network-

level workload characteristics, such as packet size distributions and other packet flow characteristics.

From their analyses, they derived heuristics for identifying and simulating audio flows from Internet

servers. Their study showed that most of the streaming-media traffic (60–80%) was transmitted

over UDP, and most clients received audio streams at low bit-rates (16–20 Kb/s). The most striking

35

difference between results obtained from their trace and our analysis is that most of their streaming

sessions were long-lived; 75% of the sessions analyzed lasted longer than one hour. We attribute

this difference to the fact that they studied server-based audio traces from a single site, while we

study a client-based trace of both audio and video streams to a large number of Internet servers.

Van der Merwe et al. [Van Der Merwe et al. 00] extended the functionality of tcpdump (a popu-

lar packet monitoring utility) to include support for monitoring multimedia traffic. Although the

primary focus of their work was building the multimedia monitoring utility, they also reported

preliminary results from traces collected from WorldNet, AT&T’s commercial IP network. As

in [Mena et al. 00], their study of over 3,000 RTSP flows also focused on network-level charac-

teristics, such as packet length distributions and packet arrival times. In addition, they characterized

the popularity of object accesses in the trace and similarly found that they matched a Zipf-like dis-

tribution. In contrast to our university client trace, the WorldNet workload peaks later in the evening

and has relatively larger weekend workloads. We attribute this difference to the time-of-day usage

patterns of the two different client populations; WorldNet users are not active until after work, while

the university users are active during their work day.

There has been significant commercial activity recently (by companies such as FastForward

Networks, Inktomi, and Akamai) on building caching and multicast infrastructure for the delivery

of both on-demand and live multimedia content. However, little has been published about these

efforts.

This dissertation builds upon this previous work in a number of significant ways. First, we study

a trace with an order of magnitude more sessions. Second, we focus on application-level character-

istics of streaming-media workloads – such as session duration and sizes, server and object popu-

larity, sharing patterns, and temporal locality – and compare and contrast those characteristics with

those of non-streaming Web workloads. Finally, we explore the potential benefits of performance

optimizations such as proxy caching and multicast delivery on streaming-media workloads.

2.2.6 Web Workload Collection

Solutions to learning about Web performance generally fall into three classes: active measurement

techniques that inject measurement traffic into the network; logs of behavior generated by Web

36

clients, servers, and proxies; and passive network monitoring. We limit our discussion of related

research here to passive network monitoring, which is the approach we took to workload collection.

We begin with a summary of low-level general-purpose network monitoring tools. These are

systems whose main focus is delivering packets from the wire to an application or to stable storage.

Next, we look at higher-level general purpose network monitoring tools. Here, the focus is building

general purpose infrastructure that makes it easier to write network monitoring applications to solve

a specific task. Finally, we examine application-specific network monitoring systems, particularly

those focused on Web-related protocols such as HTTP and RTSP.

Low-level Monitoring Tools

A packet filter provides operating system kernel support for delivering network packets to user-level

processes. A packet filter typically provides a language that client applications can use to specify

which packets should be discarded and which should be delivered. There have been many different

packet filter designs developed over the years [Mogul et al. 87, McCanne et al. 93, Yuhara et al. 94,

Engler et al. 96].

One of the most widely used tools for passive monitoring of network traffic is tcp-

dump [Tcpdump 01]. Tcpdump consists of two components: a packet capture library that provides

buffer management and a common interface to a variety of different kernel packet filters; and a set

of protocol specific presentation routines that decode the headers of a given network protocol and

then print that packet header information in a human readable format.

OC3MON [Apisdorf et al. 97] is a combined hardware and software solution for monitoring

OC3 Internet backbone links. OC3MON classifies packets into flows, where a flow is defined as a

set packets that travel from one endpoint to another, and a fixed timeout period is used to determine

when a flow terminates. OC3MON generates low-level aggregate flow-based statistics. For instance,

OC3MON can be used to record the total number of flows on a given port, and a variety of details

about those flows such as packet counts, byte counts, and flow duration.

IPMON [Fraleigh et al. 01] is a distributed passive monitoring infrastructure for measuring IP

backbone traffic. IPMON supports collecting time synchronized traces from multiple backbone

links. The measurement systems are built using a PC with a SONET interface and a RAID storage

37

system, each on a separate PCI bus. The traces that are collected include the first 44 bytes of each IP

packet, along with a timestamp generated by a GPS reference clock. IPMON can handle backbone

links up to OC-48 speed (2.5 Gbps). A one hour trace from an OC-48 link generates 176 GB of

trace data. All trace analysis is handled offline with a 16 node cluster of Linux machines.

Higher-level Monitoring Tools

Network Flight Recorder [Ranum et al. 97] is a toolkit for building network traffic analysis applica-

tions. NFR consists of a packet capture layer (using the tcpdump packet capture library), a decision

engine, and a set of backend modules. The packet capture layer delivers packets to the decision

engine, which checks the packet against all the installed filters. A filter is a predicate subroutine

used to determine whether the packet is delivered to a backend processing module. The N-code lan-

guage used to build NFR filters is much higher-level than the filter languages supported by kernel

packet filters. For example, NFR supports TCP connection reassembly within the decision engine,

so one can easily write a filter that is based on the content of application-level data within a TCP

connection. Backend modules are used for statistical analysis and logging of the data.

The high-level goals of the Windmill system [Malan et al. 98] are very similar to those of NFR

- they constructed a general purpose toolkit that makes it easier to build specific network analysis

applications. However, the implementation focus of Windmill was very different from NFR – they

focused much more on performance and much less on statistical and graphical processing of the

traffic data. Windmill developed a custom packet filter that is novel in that it can efficiently support

delivering a single packet to multiple filters using dynamic code generation. At user-level, Wind-

mill provides a set of abstract protocol modules for commonly used protocols such as IP, UDP, and

TCP that applications use to ease the task of creating analysis applications. For each of the pro-

vided modules, the programming model is as follows: the protocol module implements a traditional

end-host network protocol implementation along with a set of additional interfaces to extract state

information from the protocol stack. The monitoring system can then use multiple instances of these

modules to emulate multiple end-hosts.

38

Application-specific Monitoring Tools

Httpdump [Wooster et al. 96] was one of the earliest tools developed specifically for monitoring

HTTP. Httpdump is a passive network monitoring tool used to create logs of traffic to a set of

Web servers. Httpdump is implemented as a classification layer on top of tcpdump – it identifies

HTTP headers and then creates a log of requests and responses. However, it suffered from severe

performance problems – there was high packet loss monitoring a group of just 21 client machines

that generated 13,000 requests in a 10 day period.

BLT [Feldmann 00] is a passive network monitoring system developed specifically for studying

the behavior of HTTP traffic. BLT records both TCP and HTTP events, and this provides signif-

icantly more detail than the information that is typically found in Web proxy or server logs. BLT

supports continuous online monitoring through the use of a DLT tape loader. The BLT system has

been used in a number of locations, running for weeks at a time with less than 0.3% packet loss

when monitoring links speeds up to 100 Mb/sec.

In terms of high-level functionality, the passive network monitoring system developed in this

dissertation closely resembles the BLT system. However, there are some key differences: our system

supports monitoring traffic from multiple network interfaces on the same machine; our system takes

a significantly more aggressive approach to protecting the privacy of the users being monitored,

which also leads to certain functionality limitations that BLT does not suffer from; our system

supports monitoring for the RTSP streaming media protocol in addition to HTTP; and finally, the

implementation strategies of the two systems are very different.

As mentioned above, the mmdump [Van Der Merwe et al. 00] tool is a modified version of tcp-

dump that supports monitoring of streaming media control protocols including RTSP and H.323.

The modifications include new modules for parsing each of the control protocols, as well as a mech-

anism that allows the parsers to dynamically change the installed packet filter based on port numbers

parsed from the control protocols. This is needed because the actual streaming media content is usu-

ally delivered out of band over a UDP port that is assigned using the control protocol. The uses of

mmdump have already been described above.

A number of other Web performance studies (e.g. [Gribble et al. 97, Smith et al. 01]), used

network tracing to collect Web workloads, but the task of collecting the workloads was not the

39

focus of these studies.

2.3 Summary

We began this chapter with an overview of the background information necessary to understand

the basic interactions between Web clients, Web proxy caches, and Web servers. We reviewed the

architecture of two application-level transport protocols used to deliver Web and streaming-media

content, namely HTTP and RTSP. We provided an overview of Web caching, and summarized the

explicit mechanisms used to support caching in the HTTP protocol.

We surveyed previous research in the areas of Web workload characterization for caching, and

Web workload collection and analysis. This dissertation contributes to further understanding of

Web workload characteristics in the areas of document cachability, sharing, cooperative caching,

and streaming-media delivery. Furthermore, we develop a passive network monitoring system for

Web workload collection, and a set of tools for workload analysis.

We investigate document cachability, and observe a much higher overall rate of requests to

uncachable documents than previous studies observed in the 1996 timeframe [Gribble et al. 97,

Manley et al. 97]. A key difference in methodology from the [Caceres et al. 98, Feldmann et al. 99]

studies is that we base our cachability decision on the Squid proxy cache implementation, which

leads us to a more conservative estimate of the percentage of uncachable documents. We provide a

detailed breakdown of the possible reasons why requests and responses are uncachable, and we find

that 40% of all requests in our UW trace are uncachable. During the same time period, we find that

49% of all requests in our Microsoft campus trace are uncachable.

Earlier studies [Gwertzman et al. 95, Duska et al. 97] investigated geographical locality in Web

workloads generated by servers and proxy caches. In this dissertation, we examine organization-

based sharing, which is a form of geographic sharing. We develop a novel anonymization strategy

that allows us to associate an organization identifier with every client in our trace. This allows

us to investigate whether members of the same organization are more likely to share objects than

members of different organizations. We answer this question by comparing the amount of sharing

within the University organizations to the amount of sharing in randomly constructed organizations

of the same size. We find that the amount of sharing in the University organizations is more than in

40

the random organizations, but that this effect is not a strong one because the percentage increases

are quite small.

Along with [Duska et al. 97, Gribble et al. 97, Breslau et al. 99], we observe that proxy cache

hit rates grow logarithmically as a function of client population size. Our traces were collected later

than the other studies, and were an order of magnitude larger than the traces from other studies.

We find that for both the UW and Microsoft populations, hit rates grow logarithmically with the

client population size. We find that the popularity distributions for the UW and Microsoft traces are

both Zipf-like, with an α parameter of 0.8. Although others have observed the logarithmic growth

relationship between proxy cache hit rates and client population size, one contribution of our work is

applying that relationship to understand the performance of cooperative caching at different scales.

This dissertation builds upon previous work studying the characteristics of streaming-media con-

tent [Acharya et al. 98, Mena et al. 00, Van Der Merwe et al. 00] in a number of significant ways.

First, we study a trace with an order of magnitude more sessions. Second, we focus on application-

level characteristics of streaming-media workloads – such as session duration and sizes, server and

object popularity, sharing patterns, and temporal locality – and compare and contrast those char-

acteristics with those of non-streaming Web workloads. Finally, we explore the potential benefits

of performance optimizations such as proxy caching and multicast delivery on streaming-media

workloads.

A few tools have been developed to study the network behavior of specific application-

level protocols [Wooster et al. 96, Feldmann 00, Van Der Merwe et al. 00]. The passive net-

work monitoring system developed in this dissertation uses a similar approach to the BLT sys-

tem [Feldmann 00]. We avoid building our system on top of a general purpose high-level monitor,

such as NFR [Ranum et al. 97] or Windmill [Malan et al. 98], primary for scalability reasons: the

solutions used by these systems would not scale to handle our workload without requiring signifi-

cantly more in the way of hardware resources. One key difference between our system and BLT is

that our system supports monitoring traffic from multiple network interfaces on the same machine.

We also take a significantly more conservative approach to protecting the privacy of the users being

monitored, which in turn dictates a very different implementation strategy.

41

Chapter 3

Organization-Based Analysis of Web-Object Sharing and Caching

3.1 Introduction

In this chapter, we investigate the sharing and caching characteristics of Web document access

from the perspective of organizations. The need to understand Web behavior and performance

has led to a large number of studies, aimed in particular at classifying Web document character-

istics [Cunha et al. 95, Douglis et al. 97b, Duska et al. 97, Gribble et al. 97, Mah 97]. In contrast,

the principal goal of this study is to evaluate document sharing behavior on the Web, both within

organizations and between organizations. By document sharing, we mean access to the same Web

documents by different clients. Sharing behavior has obvious implications for performance, partic-

ularly with respect to the effectiveness of proxy caching (e.g., [Chankhuntod et al. 96, Fan et al. 98,

Gwertzman et al. 95, Kurcewicz et al. 98, Zhang et al. 97]). Proxy caches are often located at orga-

nizational boundaries and improve performance only if many documents are shared by many clients.

Therefore, an understanding of sharing gives us added insight into potential performance-enhancing

mechanisms and alternative caching structures.

An analysis of document sharing within an organization is straightforward and can help predict

the benefits of an organizational proxy cache [Duska et al. 97]. Studying sharing across multiple

organizations is much more difficult, however. Tracing of the entire Web is obviously not achiev-

able, but even simultaneous traces of multiple organizations do not currently exist. In addition, the

requirement of most organizations for anonymization of URLs and IP addresses, along with the

different dates of data capture, makes correlation of separate traces challenging, if not impossible.

In this study, we use the University of Washington (UW) as a basis for modeling intra- and

inter-organizational Web-object sharing. The UW is the largest university in the northwest part

of the U.S., with a population of over 50,000 people, including 35,000 students, 10,000 full-time

staff, and 5,000 faculty. The university has a large communications infrastructure, consisting of

42

thousands of computers connected via both high-speed networks and modems. As of May 1999,

this community generates a peak workload of about 17,400 Web requests per minute that originate

within the UW directed to external Web servers (we’ll refer to these as UW-external requests).

As with other universities, UW is organized into many colleges, departments, and programs,

each with its own disparate administrative, academic, or research focus. For example, the UW in-

cludes museums of art and natural history, medical and dental schools, libraries, administrative or-

ganizations, and of course academic departments, such as music, Scandinavian languages, and com-

puter science. What do such diverse organizations have in common with respect to their Web access

requests? To answer this question, we have traced all UW-external Web requests; we anonymize the

data in such a way as to identify requests (and associated responses) with the 170 or so independent

organizations from which they were issued. This permits us to study organization-specific docu-

ment access and sharing behavior. We have collected a number of traces during the period from the

Summer of 1998 through the present. In general, all of our traces show the same basic patterns. The

results in this chapter are based on a representative one-week trace taken in mid-May 1999.

In this chapter, we expand on previous research efforts studying the cachability of Web docu-

ments and document locality. Although our primary focus is on sharing and cachability, we can also

compare our current HTTP traffic characteristics to earlier studies, showing how the Web workload

has changed. Our work is based on recent data from a large diverse population. More important,

we preserve enough information about client location that we can analyze requests with respect to

inter-organization and intra-organization document sharing.

The remainder of this chapter is organized as follows. In Section 3.2 we describe our trace-

capture methodology. Section 3.3 contains a high-level description of the workload we traced.

Section 3.4 focuses on organization-based statistics and also provides inter- and intra-organization

sharing analysis. In Section 3.5 we discuss cachability of documents, and reasons why documents

are not cachable. Finally, Section 3.6 summarizes our study and its results.

3.2 Measurement Methodology

In this section, we provide a brief overview of the traffic collection and analysis infrastructure de-

veloped to perform this study. A significantly more detailed description of the tracing system is

43

provided in Chapter 6. We use passive network monitoring to collect our traces of Web traffic be-

tween the University of Washington and the rest of the Internet. We designed and implemented the

tracing software that produced the data in this study. Our tracing software performs TCP connection

reconstruction on all TCP segments that flow through the UW Internet border. Our tracing software

captures all HTTP headers including those from HTTP connections using non-standard ports and

those from HTTP persistent connections.

We use an anonymization approach that protects privacy, but preserves some address locality

information. For internal addresses, we classify the IP address based on its “organization” mem-

bership. An organization is a set of university IP addresses that forms an administrative entity; an

organization may include multiple subnets. For instance, all machines in the Computer Science De-

partment are in a single organization, machines in the Department of Dentistry are in another, and

machines connected to the campus Museum of Natural History are in yet another. We constructed

the mapping from subnets to organization identifiers based on information obtained from the cam-

pus network administrators. Once the organization identifiers are assigned, both the IP address and

the organization identifier are anonymized. Furthermore, some bits of information in the IP address

are destroyed before anonymization to make the anonymization more secure. If the hash function

or key is compromised, no transaction can be associated with a given client address with absolute

certainty.

For external addresses, we anonymize each octet of the server IP address separately. For our

purposes, two servers are near each other if they share most or all of the Internet path between them

and the university. We consider two servers to be on the same subnet when the first three octets

of their IP addresses match. Given the use of classless routing in the Internet, this scheme will not

provide 100% accuracy, but for large organizations we expect that this assumption will be overly

conservative rather than overly aggressive.

Although our tracing software records all HTTP requests and responses flowing both in and

out of UW, we filter the data presented in this chapter to look at only HTTP requests generated by

clients inside UW, and the corresponding HTTP responses generated by servers outside of UW. All

of our results are based on the entire trace collected from Friday May 7th through Friday May 14th,

1999, except for the organization-based sharing results in Section 3.4, which are from a single day

(Tuesday) of our trace (the limitation is due to the memory requirements of the sharing analysis).

44

3.3 High-Level Data Characteristics

Table 3.1 shows the basic data characteristics. As the table shows, our trace software saw the

transfer of 677 gigabytes of data in response packets, requested from about 23,000 client addresses,

and returned from 244,000 servers. It is interesting that, compared to the commonly-used 1996 DEC

trace (analyzed, e.g., in [Duska et al. 97]), which had a similar client population, we saw four times

as many requests in one week as DEC saw in 3 weeks. These requests and corresponding response

and close events follow the typical diurnal cycle, with a minimum of 460 requests per minute (at 5

AM) and a peak of 17,400 requests per minute (at 3 PM).

Figures 3.1a and 3.1b present a histogram of the top content types by object count and bytes

transmitted, respectively. By count, the top four are image/gif, text/html, No Content Type, and

image/jpeg, with all the rest of the content types at significantly lower numbers. The No Content

Type traffic, which accounts for 18% of the responses, consists primarily of short control messages.

The largest percentage of bytes transferred is accounted for by text/html with 25%, though the sum

of the image/gif (19%) and image/jpeg (21%) types accounts for 40% of the bytes transferred. The

remaining content types account for decreasing numbers of bytes with a heavy-tailed distribution.

Another type that accounts for significant traffic, which is not readily apparent from the table,

is multimedia content (audio and video). The sum of all 59 different audio and video content types

that we observed during the May trace adds up to 14% of all bytes transferred via HTTP. In addition,

there is a significant amount of streaming multimedia content that is delivered through an out-of-

band channel between the audio/video player and the server.

In a preliminary attempt to view some of this out-of-band multimedia traffic, we extended our

tracing software to analyze connections made by the Real Networks audio/video player, examining

port 7070 traffic. Newer versions of the Real Networks player use the RTSP protocol, which we

do not handle. The Real Networks player sets up a TCP control connection on port 7070, and

then transfers the data on UDP port 7070. Our trace software only collects TCP segments, so we

analyze the control connection to determine how much data is being transferred. When the control

connection is shut down, a “statistics” packet is transmitted that contains the average bandwidth

delivered (in bits per second) as measured by the client for the completed connection. We take that

bit-rate and multiply it by the connection duration time to estimate the size of the content transferred.

45

Table 3.1: Overall statistics for the one-week UW HTTP trace.

HTTP Transactions (Requests) 82.8 million

Objects 18.4 million

Clients 22,984

Servers 244,211

Total Bytes 677 GB

Average requests/minute 8,200

Peak requests/minute 17,400

0 10 20 30 40

% Responses

video/quicktime

multipart/x-mixed-replace

video/mpeg

application/pdf

application/zip

audio/x-pn-realaudio

application/vnd.rn-realplayer

text/css

application/octet-stream

text/plain

application/x-javascript

image/jpeg

No Content Type

text/html

image/gif

Content Type

(a) By Count

0.0

0.0

0.0

0.0

0.0

0.1

0.1

0.1

0.4

1.0

1.0

12.3

17.8

24.4

42.3

0 5 10 15 20 25

% All Bytes

multipart/x-mixed-replace

audio/x-pn-realaudio

application/pdf

application/x-macbinary

video/x-msvideo

audio/mpeg

No Content Type

text/plain

video/mpeg

application/zip

video/quicktime

application/octet-stream

image/jpeg

image/gif

text/html

Content Type

(b) By Bytes

0.6

0.8

0.9

1.2

1.5

1.7

1.9

2.0

3.8

3.9

5.7

6.4

18.9

20.9

25.3

Figure 3.1: Histogram of the top 15 content types by count and size.

46

Some of the control connections do not transmit the statistics packet, in which case we cannot make

an estimate.

During the week of the May trace, we observed 55000 connections, of which approximately 40%

had statistics packets. For those 40%, we calculated that 28 GB of Real-Audio and Real-Video data

were transferred (which would scale to 10% of the amount of HTTP data transferred if the other

60% of connections have similar characteristics). Furthermore, the Real-Audio and Real-Video

objects themselves are quite large, with an average size of just under a megabyte. When we sum up

all the different kinds of multimedia content, we see that from 18% to 24% of Web-related traffic

coming in to the University is multimedia content, and this is a lower bound since we know that

we’re missing RTSP traffic at the very least. We believe that the large quantity of audio and video

is signaling a new trend; e.g., in the data collected for studies reported in [Douglis et al. 97b] and

[Gribble et al. 97], audio traffic does not appear. In Chapter 5, we use a more reliable methodology

to perform a detailed study of the characteristics of RTSP traffic usage at UW during a one-week

period in April of 2000.

We also examined the distribution of object sizes for HTTP objects transmitted. We observe here

once again the usual heavy-tailed phenomenon that has been observed for object size distributions

in all previous studies. In our trace, we found a mean object size of 8.3 KB, with a median of just

over 1 KB. These numbers are fairly consistent with those measured in earlier traces, e.g., [Mah 97,

Gribble et al. 97].

We were also curious about the HTTP protocol versions currently in use. The majority of re-

quests in our trace (53%) are made using HTTP 1.0, but the majority of responses use HTTP 1.1

(69%). In terms of bytes transferred, the majority of bytes (75%) are returned from HTTP 1.1

servers.

These statistics simply serve to provide some background about the general nature of the trace

data, in order to set the context for the analysis in the next two sections.

3.4 Analysis of Document Sharing

This section presents and analyzes our trace data, focusing on document sharing. As previously

stated, our intention is to use the university organizations as a simple model of independent orga-

47

nizations connecting to the Internet. Our goal is to answer several key questions with respect to

Web-document sharing, for example:

1. How much object sharing occurs between different organizations?

2. What types of objects are shared?

3. How are objects shared in time?

4. Is membership in an organization a predictor of sharing behavior?

5. Are members of organizations more similar to each other than to members of different orga-

nizations, or do all clients behave more-or-less identically in their request behavior?

Figure 3.2 plots total Web requests per 5 minute period over the one-week trace period. The

shading of the graph divides the curve into three areas: the darkest portion shows the fraction of

requests that are initial (first) requests to objects, while the medium and light grey portions show

the subset that are duplicate (repeated) requests to documents. A request is considered a duplicate

if it is to a document previously requested in the trace by any client. The lightest grey region shows

those requests that are both duplicate and cachable, as we will discuss later.

Overall, the data shows that about 75% of requests are to objects previously requested in the

trace. This matches fairly closely the results of [Duska et al. 97] on several large organizational

traces. The percentage of shared requests rises very slowly over time, as one might expect. From

our one-week trace, we cannot yet see the peak; however, this analysis does not consider document

timeouts or replacements, therefore the 75% is optimistic if used as a basis for prediction of cache

behavior. Furthermore, we cannot tell from this figure how many of the requests to a shared object

were duplicate requests from the same client; overall, we found that about 60% of the requests

to shared documents were first requests by a given client to those documents; 40% were repeated

requests by the same client.

A key component of our data is the encoding of the organization number, which allows us

to identify each client as belonging to one of the 170 active university organizations. These or-

ganizations include academic and administrative departments and programs, dormitories, and the

48

20
:0

0
S

at
 0

0:
00

04
:0

0
08

:0
0

12
:0

0
16

:0
0

20
:0

0
S

un
 0

0:
00

04
:0

0
08

:0
0

12
:0

0
16

:0
0

20
:0

0
M

on
 0

0:
00

04
:0

0
08

:0
0

12
:0

0
16

:0
0

20
:0

0
T

ue
 0

0:
00

04
:0

0
08

:0
0

12
:0

0
16

:0
0

20
:0

0
W

ed
 0

0:
00

04
:0

0
08

:0
0

12
:0

0
16

:0
0

20
:0

0
T

hu
 0

0:
00

04
:0

0
08

:0
0

12
:0

0
16

:0
0

20
:0

0
F

ri
00

:0
0

04
:0

0
08

:0
0

12
:0

0
16

:0
0

Time

0

20000

40000

60000

80000

Requests
per

5 Minutes

Initial
Duplicate
Cachable

Figure 3.2: Requests broken down into initial, duplicate, and cachable duplicate requests over time.

university-wide modem pool. Figures 3.3a and 3.3b show the organization size, the request rate,

and number of objects accessed by each organization. There are several very large organizations,

with most somewhat smaller. The largest organization has 919 “anonymized” clients, the second

largest organization is the modem pool with 759 clients, and the third largest organization has 626

clients.1 The top 20 organizations all have more than 100 clients, as shown by the labels in Fig-

ure 3.4. Because of the way that client IP addresses are anonymized, we cannot uniquely identify an

individual client, i.e., each anonymized client address could correspond to up to 4 separate clients.

For this trace the ratio of “real” clients to “anonymized” clients measured by the low levels of our

trace software is 1.67; therefore, our 13,701 anonymized clients represent 22,984 true clients.

Using the organization data, we can analyze the amount of object sharing that occurs both within

and between organizations.

Figure 3.5a shows intra-organization (local) sharing from the perspective of both objects and

requests. The black line shows the percentage of all objects accessed by each organization that

are locally-shared objects, i.e., accessed by more than one organization member. The light grey

line shows the percentage of all organization requests that are to these locally-shared objects. The

1The modem pool is somewhat special, because multiple clients can login through a single IP address in the pool.

49

0 20 40 60 80 100 120 140 160

Organization Number

0

200

400

600

800

C
lie

n
ts

(a) Clients Per Organization

0 20 40 60 80 100 120 140 160

Organization Number

1

10

100

1000

10000

100000

1000000

C
o

u
n

t
(l

o
g

)
(b) Objects and Requests Per Organization

Objects
Requests

Figure 3.3: Distribution of clients, objects, and requests in organizations. The object and request
graph is sorted by the number of objects in an organization. Note that the y-axis of (b) uses a log
scale.

91
9

75
9

62
6

38
4

35
9

33
3

28
1

22
0

20
5

19
3

18
4

18
0

17
4

17
2

16
8

16
3

15
0

13
1

12
3

11
5

Clients in Organization

0

20

40

60

80

100

%
 O

b
je

ct
s

(a) Object Sharing

Not Shared
Shared Locally Only
Shared Globally and Locally
Shared Globally Only

91
9

75
9

62
6

38
4

35
9

33
3

28
1

22
0

20
5

19
3

18
4

18
0

17
4

17
2

16
8

16
3

15
0

13
1

12
3

11
5

Clients in Organization

0

20

40

60

80

100

%
 R

eq
u

es
ts

(b) Request Sharing

Figure 3.4: Breakdown of objects (a) and requests (b) into the different categories of sharing, for the
20 largest organizations. The labels on the x-axis show the number of clients in each organization.

50

0 20 40 60 80 100 120 140 160

Organization Number

0

20

40

60

80

100

%
 T

o
ta

l

(a) Intra-Organization Sharing (Local)

Locally-Shared Objects
Locally-Shared Requests

0 20 40 60 80 100 120 140 160

Organization Number

0

20

40

60

80

100

%
 T

o
ta

l
(b) Inter-Organization Sharing (Global)

Globally-Shared Objects
Globally-Shared Requests

Figure 3.5: The left graph shows the fraction of objects and requests accessed by the organization
that are shared by more than one client within the organization. The right graph shows the frac-
tion of objects and requests accessed by the organization that are shared with at least one other
organization.

organizations are ordered by decreasing locally-shared object percentage. From our data on intra-

organization sharing we can make the following observations:

• Only a small percentage (4.8% on average) of the objects accessed within an organization are

shared by multiple members of the organization (the smooth black line).

• However, a much larger percentage of requests (16.4% on average) are to locally-shared ob-

jects (the light grey line).

• The average number of requests per locally-shared object is 4.0 – higher than the minimal 2

requests required for an object to be considered shared.

• Each locally-shared object is requested by two clients on average within each organization.

Figure 3.5b shows the inter-organization (global) sharing activity. Here the black line shows the

percentage of all objects accessed by each organization that were also accessed by at least one other

organization; we call such objects globally-shared objects. Similarly, the light grey line shows

51

the percentage of all requests by an organization to globally-shared objects. The organizations

are ordered by decreasing globally-shared object percentage. From our data on inter-organization

sharing we can make the following observations:

• There is more sharing with other organizations than within the organization; the fraction of

globally-shared objects and requests in Figure 3.5b is much higher than the locally-shared

objects and requests in Figure 3.5a. This is not surprising, because the combined client pop-

ulation of all of the organizations is significantly larger than any one organization alone. As

a result, there is a much greater opportunity for the clients in one organization to share with

clients from any of the other organizations.

• For 65% of the organizations, more than half of the objects referenced are globally-shared

objects (the smooth black line).

• For 94% of the organizations, more than half of the requests are to globally-shared objects,

and for 10% of the organizations 75% of the requests are to globally-shared objects (the light

grey line).

• However, globally-shared objects are not requested frequently by each organization. On av-

erage, each organization makes 1.5 requests to a globally-shared object.

• On average, a globally-shared object is accessed by only one client in each organization.

A key question raised by these figures is whether the objects shared within an organization are

the same set of objects that are shared across organizations. Figure 3.4a shows, for the 20 largest or-

ganizations, a breakdown of organization-accessed objects into various sharing categories: locally-

shared only, globally-shared only, both locally and globally-shared, and not shared. Figure 3.4b

shows the same breakdown by requests rather than objects. The graphs are ordered in decreasing

organization size, with the organization size shown on the x-axis.

From Figure 3.4b, we see that the fraction of requests to shared objects is fairly flat across these

organization sizes. As we would expect, the fraction that are shared globally-only rises somewhat

with decreased organization size, while the fraction that are locally-shared decreases with decreasing

52

organization size. That is, in general, the smaller the organization, the less organization-internal

sharing, and the more global sharing. Looking at the white section of the bars in both figures, we

see that the small percentage of objects that account for both local and global sharing are very hot,

and account for a much greater fraction of the requests than the objects they represent. In contrast,

the percentage of requests to objects shared locally-only is very small for these organizations.

To aid in the understanding of the degree of object sharing, Figure 3.6 plots the number of

objects (on the y-axis) that were shared by exactly x organizations. Most objects are accessed by

only one organization, as shown by the steepness of the curve at x = 1. We also found that there

were more than 1000 objects accessed by 20 organizations and more than 100 objects accessed by

45 organizations.

A key question with respect to our sharing data is whether organization membership is signif-

icant. To answer this question, we randomly assigned clients to organizations, and compared the

inter- and intra-organization sharing in the random assignments with the sharing seen in our trace

analysis presented above. In this experiment, we created the random organizations to have the

same number of clients as the actual organizations. Figure 3.7a plots the fraction of requests to

locally-shared objects of the trace organizations and three randomly-assigned organizations. From

the figure, we see that sharing is higher in the real organizations than in the randomly-assigned or-

ganizations. In other words, there is locality of references in organization membership. Figure 3.7b

plots the fraction of requests to globally-shared objects for the trace and for the three random orga-

nizations. As expected, there is no significant difference in the amount of global sharing between

the real trace and the randomized organization assignment.

The organization-oriented data show that membership within an organization does influence the

amount of sharing. Members of an organization are more likely to request the same documents than

a set of clients of the same size chosen at random. However, the extent of this influence is not large,

as the vast majority of the requests made are to objects that are globally shared. In addition, objects

that are shared both locally within an organization and globally with other organizations are more

likely to be requested by an organization member. This suggests that the most requested objects are

universally popular.

53

0 20 40 60 80 100 120 140

of Requesting Organizations

1

10

100

1000

10000

100000

1000000

Number of
Objects

Accessed
(log)

Figure 3.6: The number of objects accessed by a given number of organizations. Note that the y-axis
uses a log scale.

0 20 40 60 80 100 120 140 160

Organization Number

0

10

20

30

40

50

%
 R

eq
u

es
ts

(a) Intra-Organization Sharing (Local)

Trace
Random1
Random2
Random3

0 20 40 60 80 100 120 140 160

Organization Number

0

20

40

60

80

100

%
 R

eq
u

es
ts

(b) Inter-Organization Sharing (Global)

Trace
Random1
Random2
Random3

Figure 3.7: Trace vs. Random Sharing. We show the fraction of requests generated by the organiza-
tion that are (a) shared within this organization, and (b) shared with at least one other organization,
in both cases compared with three random client-to-organization assignments.

54

3.4.1 Object and Server Popularity

Another aspect of sharing patterns that we examine is the popularity of those servers being accessed.

We also investigate popularity using server proximity information (i.e., which servers are close to

each other in the network).

Figure 3.8 shows the cumulative distribution functions of both server popularity and server sub-

net popularity, where popularity is measured by the request-count. We also measured popularity

using byte-counts, and the byte-count curves for server popularity and server subnet popularity are

effectively identical to the request-count curves shown in the graph. The data indicates that 50% of

the objects accessed and bytes transferred come from roughly the top 850 servers (out of a total of

244,211 servers accessed). As described in Section 3.2, we consider a server subnet to be a set of

servers that share the same first 24 bits of their IP addresses. Such groups of servers are typically

mirrors of each other, or at least sit in a single server farm owned by a single company. We see that

50% of the objects come from about the top 200 server subnets; 18% come from the top 20 subnets.

One factor that we cannot account for in the server subnet analysis is Web hosting companies. Web

hosting companies provide a set of machines that sit on the same subnet yet act as Web servers for

different companies or organizations. In fact, a single machine may be acting as a Web server for

multiple organizations.

3.5 Document Cachability

This section examines cachability of documents, giving us insight into the potential effectiveness of

proxy caches in our environment. Web proxy caches are a key performance component of the Web

infrastructure; their objective is to improve performance through caching of documents requested

more than once. Proxies typically live at the boundaries of an organization, caching documents for

all clients within that organization.

In Figure 3.2 we saw a time-series graph of the percentage of duplicate requests (i.e., requests

to a previously-accessed document) and the percentage of cachable duplicate requests in our trace.

A request is considered cachable when it is made to a document that would be cached by a standard

proxy cache, such as Squid [Squid 01]. We found that, in steady state, approximately 45% of the

requests are duplicate and cachable, placing an upper bound on the hit rate. The wide difference

55

0 2000 4000 6000 8000 10000

Server and Server Subnet Number

0

20

40

60

80

100

%
 T

o
ta

l

Requests to Server Subnets
Requests to Servers

Figure 3.8: The cumulative distributions of server and server subnet popularity.

between the duplicate line and the cachable line indicates that only about half of the duplicate

requests (which could benefit from caching) are to objects that are cachable.

Our cachability analysis is based on the implementation of the Squid proxy cache. We examined

the policies implemented by both Squid version 1 and Squid version 2. There are several reasons

why a Squid proxy may consider a document uncachable.

• CGI – The document was created by a CGI script or program and is not cached, because it is

produced dynamically.

• Cookie – The response contains a set-cookie header. Squid version 1 does not allow these

responses to be cached, but Squid version 2 does allow them to be cached. Note that both

versions of Squid consider requests that contain a cookie header to be cachable.

• Query – The request is a query, i.e., the object name includes a question mark (“?”).

• Pragma – The request or response is explicitly marked uncachable with a “Pragma: no-cache”

header.

• Cache-Control – The request or response is explicitly marked uncachable with the HTTP 1.1

Cache-Control header.

56

• Method – The request method is not “GET” or “HEAD”.

• Response-Status – The server response code does not allow the proxy to cache the response.

For example, response code 302 (Moved Temporarily) cannot be cached when there is no

explicit expiration date specified.

• Push-Content – The content type “multipart/x-mixed-replace” is used by some servers to

specify dynamic content.

• Auth – Requests that specify an Authorization header.

• Vary – Responses that specify a Vary header.

Figure 3.9 shows a breakdown of all HTTP requests, detailing the percentage that are uncachable

for each of the reasons listed above. As the figure shows in the bar labeled “Overall Uncache”, 40%

of the requests are uncachable for one or more of the itemized reasons. Queries and Response Status

are the two major reasons for uncachability. Adding up the percentages for each reason sums to an

amount greater than the overall uncachability rate, showing that many documents are uncachable

for more than one reason. The figure also shows, for each itemized reason, the percentage of HTTP

requests that are uncachable only due to that reason. Finally, the figure shows that 16% of Web

requests are uncachable for two or more reasons. Figure 3.10 shows the most common content

types for the uncachable documents.

Our intent in analyzing the cachability of documents is to show which requests a deployed proxy

cache would be allowed to store if it were given the request stream from our trace. However, one

should not infer from our analysis that all of the uncachable requests are truly dynamic content. Web

content providers may choose to mark documents uncachable for other reasons, such as the desire to

track the behavior of individual users. Figure 3.10 shows that more than 12% of all the uncachable

documents have the image/gif content type, and we suspect that very few of these images are truly

dynamic content.

Figure 3.11a shows, for each organization, the percentage of objects (black line) requested by

the organization that are potentially cachable. The light grey line shows, for each organization,

57

0 10 20 30 40

% of All Requests

Two Or More Reasons
Only Vary
Only Auth

Only Push Content
Only Response Status

Only Method
Only Cache Control

Only Pragma
Only Query

Only Cookie
Only CGI

Vary
Auth

Push Content
Response Status

Method
Cache Control

Pragma
Query

Cookie
CGI

Overall Uncache

Reasons for
Uncachability

16.4
0.2
0.6
0.0

15.0
0.3
0.9
1.8

3.7
0.6
0.4
0.3
1.0

0.0
22.8

1.4
5.7

7.7
13.9

4.4
6.2

40.0

Figure 3.9: Reasons for uncachability of HTTP transactions.

0 10 20 30 40

% of Uncachable Requests

application/vnd.rn-realplayer

application/octet-stream

image/jpeg

text/plain

application/x-javascript

image/gif

text/html

No Content Type

Content Types of
Uncachable Objects

0.2

0.3

1.5

1.7

1.7

12.1

37.4

44.4

Figure 3.10: Breakdown by content-type of the uncachable HTTP transactions.

58

0 20 40 60 80 100 120 140 160

Organization Number

0

20

40

60

80

%
 T

o
ta

l

(a) Cachable Objects and Requests

Cachable Objects
Cachable Requests

0 20 40 60 80 100 120 140 160

Organization Number

0

10

20

30

%
 T

o
ta

l
(b) Cachable and Shared

Shared and Cachable Objects
Cachable Requests to Shared Objects
First Cachable Requests to Shared Objects

Figure 3.11: The left graph shows the fraction of cachable objects and cachable requests accessed
by each organization. The right graph shows the fraction of objects and requests that are both
cachable and shared by more than one organization.

the percentage of cachable requests. The figure shows that the percentage of cachable objects is

somewhat lower than the percentage of cachable requests. The percentage of cachable requests

gives an upper bound on the hit rate each organization could see with an organization-local proxy

cache.

Figure 3.11b shows, for each organization, the percentage of cachable shared objects (the black

line), and the percentage of cachable shared requests in two categories. The medium grey line shows

those first requests by an organization to globally shared objects. The light grey line shows the total

number of requests by an organization to globally shared objects. The difference between these

two lines represents the duplicate requests by an organization to globally shared objects. If each

organization has its own cache, then the local cache can handle all duplicate requests whether or not

there is a global cache. If there is a global cache in addition to the local caches, then the global cache

will miss on the first request by any of the organizations, but will hit on all the first requests by other

organizations that follow. One can conclude from this graph that there is significant sharing among

organizations (as shown by the light grey line), but that a large fraction of that sharing is captured

just with organizational caches (as shown by the difference between light and medium grey lines).

59

Therefore, a global cache in addition to the local caches will help, but not nearly to the degree

indicated by the amount of sharing among organizations. Another interesting question is whether a

single global cache would be better than using local caches. We explore this question in Chapter 4.

A last factor that can affect the performance of caching is object expiration time. We found

overall that only 9.2% of requests had an expiration specified. Most of these requests are to objects

that expire quickly; 47% are to objects that expire in less than 2 hours. Interestingly, of those that

did have an expiration specified, 26% had a missing or invalid date and 29% had an expiration time

that had already passed.

Finally, we have not presented detailed cache simulations here; our objective is simply to

analyze cachability of documents in the most recent data. From our data, it appears that the

trends with respect to cachability of documents are getting worse. For example, our measure-

ment that 40% of all document accesses are uncachable is significantly higher than the 7% re-

ported for client traces at Berkeley in 1997 [Gribble et al. 97]. Without widespread deployment

of special mechanisms to deal with caching, such as caching systems that handle dynamic con-

tent [Cao et al. 98, Challenger et al. 99], the benefits of proxy caching are not likely to improve.

3.6 Conclusions

In this chapter, we have collected and analyzed a large recent trace taken in a university setting. Our

study has focused on sharing of Web documents within and among a diverse set of organizations

within a large university.

We can reach the following conclusions from our data:

• When clients are members of the same organization, there is a measurable increase in the

amount of sharing when compared with clients that are members of different organizations.

However, this increase is not large enough to have a significant impact on cache performance.

The vast majority of the requests made (and the objects requested) are to objects that are

shared among multiple organizations.

• Objects that are simultaneously shared locally by an organization and globally with other

organizations are more likely to be requested by an organization member than objects that are

60

just shared locally or just shared globally. This suggests that the most-requested objects by an

organization are globally and universally popular.

• The trace shows mostly minor differences relative to earlier traces in terms of many of the

basic characteristics. However, we see two important differences compared to previous traces.

The first is that the percentage of requests to uncachable documents is significantly higher.

The second is that a significant amount of audio/video content appears in our trace.

When analyzing these conclusions, one must keep in mind that we do not know how similar our

university organizations are to typical commercial organizations that connect to the Internet. We do

explore this question to some extent in Chapter 4. We have only begun to analyze the data we have

collected. Possible future work includes a more detailed statistical analysis of various aspects of the

data already collected, as well as a study of the evolution of Web traffic characteristics over time.

61

Chapter 4

The Scale and Performance of Cooperative Web Proxy Caching

4.1 Introduction

Cooperative caching – the sharing and coordination of cache state among several communicating

caches – has been shown to improve the performance of file and virtual-memory systems in a high-

speed, local-area network environment [Anderson et al. 96, Feeley et al. 95]. For example, when a

file-page miss occurs, the local file cache may transfer the page from the file cache on another node.

Cooperative caching works in this environment because network transfer time is much smaller than

the disk access time required to service a miss.

Internet proxy caching has become a commonplace approach for improving the performance of

Web browsers. Typically, the proxy sits in front of an entire company or organization. By caching

requests for a group of users, a proxy can quickly return documents previously accessed by other

clients. Ultimately, though, the hit rate of the proxy is a function of the size of the population

it manages – a size often dictated by political, organizational, or geographic considerations. An

obvious question, then, is whether multiple proxies should cooperate with each other in order to

increase total client population, improve hit ratios, and reduce document-access latency. Whether

such cooperative proxy caching is a useful architecture for improving performance depends on a

number of factors. These include the sharing patterns of documents across organizations, the ra-

tio of inter-proxy communication time to server fetch time, and the scale at which cooperation is

undertaken.

Several cooperative-caching protocols have been proposed [Chankhuntod et al. 96, Fan et al. 98,

Michel et al. 98, Rabinovich et al. 98, Tewari et al. 99]; however, few studies have examined coop-

erative Web caching from a systemic viewpoint. As a result, we know neither the environments in

which cooperative caching is useful (if any) nor its potential performance benefits. Answering such

questions has been difficult in the past, because studying proxy cooperation requires simultaneous

62

traces from multiple proxies.

In this chapter, we explore the potentials and limits of cooperative proxy caching using trace-

based analysis. We collect and analyze traces from two environments: the University of Washington

and the Microsoft Corporation. As a key component of our university trace, we identify each client

in terms of its membership in one of about 200 university departments or programs. This gives

us the equivalent of a simultaneous trace of 200 diverse, independent organizations, permitting us

to analyze document sharing among those organizations and to measure the potential benefits of

cooperation among organization-based proxies. We examine latency and bandwidth benefits of

proxy caching for these data, as well. We then use the Microsoft trace of employee traffic to the

Internet to explore the potential of cooperation between larger organizations. To do this, we analyze

traces from Microsoft and the university that we collected over the same time period and processed

with the same anonymization function. This permits a direct computation of the degree of document

sharing, and hence the benefit of sharing, between two proxies each handling tens of thousands of

clients.

Our results show the benefits of cooperative caching among collections of small organizations.

However, we show that cooperative caching is unlikely to have significant benefits for larger organi-

zations or populations. That is, with current sharing patterns, there is little point in designing highly

scalable cooperative-caching schemes; all reasonable schemes will have similar performance in the

low-end population range where cooperative caching works. Thus, the crucial problem that must be

solved to improve Web performance is how to increase document cachability.

The remainder of this chapter is organized as follows. The next section examines in greater detail

the questions we aim to answer about the relationship between document sharing and cooperative

caching. Sections 4.3 and 4.4 introduces the traces and simulation methods used in this study.

Sections 4.5 through 4.8 present the hit-rate, latency, and bandwidth results of our trace-driven

simulations. Section 4.9 summarizes and concludes.

4.2 Document Sharing and Cooperative Proxy Caching

This chapter poses and answers a number of questions about the potential of cooperative proxy

caching. We focus on exploring the bounds of cooperative-caching performance. Key questions

63

include:

1. What is the best performance one could achieve with “perfect” cooperative caching?

2. For what range of client populations can cooperative caching work effectively?

3. Does the way in which clients are assigned to caches matter?

4. What cache hit rates are necessary to achieve worthwhile decreases in document access la-

tency?

To answer these questions quantitatively, we have collected and analyzed Web access data from

two environments: (1) the University of Washington (UW), consisting of about 50,000 students,

faculty, and staff, and (2) the Microsoft Corporation (MS), consisting of about 40,000 employees.

Most significantly, the two traces were collected simultaneously and anonymized in the same way,

allowing direct comparison of trace records, including URLs and server addresses. We use the

UW trace as a way to analyze document sharing by 200 small, independent organizations within

a diverse university; we use the UW and Microsoft traces together as a way to analyze document

sharing across two large organizations. In both environments, we examine the potential benefits

of proxy cache coordination from the perspective of the clients and the network; in this study, we

do not investigate the effects of cooperative caching on server load in general or under hot-spot

conditions.

The following sections present results derived from these traces. In related work, we devel-

oped an analytic model of Web client behavior that goes beyond the limitations of our trace client

populations to much larger population sizes [Wolman et al. 99b].

4.3 Trace collection and characteristics

While several client traces exist in the public domain [Cunha et al. 95, Douglis et al. 97b,

Duska et al. 97, Gribble et al. 97, Mah 97], most are several years old, and the information they

contain is inadequate for our analysis. We therefore designed and implemented custom trace soft-

ware and installed it at the University of Washington’s Internet border. The details of our trace

collection and analysis system are covered in Chapter 6.

64

Few proxy caches are deployed within our university, so at the border we are able to see almost

all of the Web client traffic generated from inside the university. The traces are anonymized, but the

anonymization preserves certain key aspects of the data that we require. In particular, we anonymize

client IP addresses, but we first classify the client based on its organizational membership. This al-

lows us to identify requests from different academic and administrative entities within the university,

and classify each entity as a unique organization. We describe the use of this information in Sec-

tion 4.7.

The trace used in this chapter was collected from May 7th through May 14th, 1999, and Table 4.1

presents the high-level details of this trace. As the table shows, we saw about 83 million requests

by 23,000 clients to 244,000 servers over the seven-day period in the UW trace. Using this data, we

can determine upper bounds on the performance of any cooperative caching algorithm. This tells us

whether proxy cooperation is worthwhile even in the best case in our environment.

We also processed traces collected by the proxies handling all outgoing traffic from the Microsoft

Corporation. These traces were collected on the same days that we collected our UW trace. Our

software anonymizes both traces using the same functions, so that URLs and server IP addresses

can be directly compared. Table 4.1 shows that in the period May 7th to May 14th, 1999, we saw

about 108 million requests by 60,000 clients to 360,000 servers in the Microsoft trace.

4.4 Simulation methodology

The results presented in this chapter are based on Web cache simulations using our traces as input.

This section discusses the methods used for the experiments we performed.

We make assumptions in our simulator that a real cache would not make, and therefore do not

model reality exactly. However, our goal is to investigate behavior, not to reproduce hit rates ex-

actly, and we believe that our assumptions do not change our conclusions about cache behavior.

The caches we simulate are infinite-sized and do not model expirations. As a result, they are some-

what optimistic. Real caches will incur misses owing to capacity limitations that we do not model.

However, capacity misses are rarely the bottleneck for Web caches. For example, only three percent

of the requests to the Microsoft Web proxies from which we gathered our traces missed due to the

finite capacity of the proxies (which have 9 GB of RAM and 180 GB of disk capacity). Real caches

65

Table 4.1: Overall statistics for the UW and Microsoft HTTP traces.

Parameter UW Microsoft

HTTP Requests 82.8 million 107.7 million

HTTP Objects 18.4 million 15.3 million

Total Request Bytes 677 GB (N/A)

Average Requests/Min 8,200 11,900

Clients 22,984 60,233

Servers 244,211 360,586

Duration 7 days 6 days 6 hours

will also expire some objects that our simulations keep alive in the cache.

At the same time, our simulation experiments are conservative, because they include compulsory

(cold start) misses. We minimize this effect by simulating traces over long periods of time. In a

related study [Wolman et al. 99b], we exclude the effect of compulsory misses by using an analytic

model to study the steady-state performance of Web caches.

We simulate two kinds of Web caches, a “practical” cache and an “ideal” cache. A practical

cache closely models the cachability of documents according to the algorithms in the Squid V2 im-

plementation [Squid 01]. Our cachability predicate accounts for HTTP 1.1 cache control headers,

cookies, object names with suffixes naming dynamic objects, no-cache pragmas, uncachable meth-

ods and response codes, and headers with Authorization and Vary fields. We reported the detailed

breakdown of document cachability in our traces in Chapter 3.

An ideal cache treats all documents as cachable. It is well known that some Web objects, such as

images used in advertisements, are marked uncachable even though their contents do not change and

could be cached. Future improvements to Web protocols and cache implementations can potentially

be more aggressive and cache those objects that practical proxies cannot currently cache. Since we

cannot anticipate all future improvements and implement them in our simulator, we instead use an

ideal cache to report the upper bound that such improvements can hope to achieve on our workloads.

Many of the experiments examine cache performance as a function of client population. Because

66

each UW modem is reused by many people, using a modem IP address to represent a client would

be inaccurate. As a result, we exclude modem traffic in our analyses and focus on LAN users.

In most of the graphs that follow, the clients for a given population size are randomly selected

out of the pool of clients seen in our traces. Unless otherwise specified, each point shown in these

graphs is the mean of four independent random trials, and error bars show the standard deviation

across these trials.

4.5 The Impact of Population Size

In a cooperative-caching scheme, a proxy forwards a missing request to other proxies to determine

if: (1) another proxy holds the requested document, and (2) that document can be returned faster

than a request to the server. Whether such cooperation is worthwhile will depend on the number of

proxies involved, their distances (inter-proxy communication latencies), their utilizations, the client

populations served, and the complexity of the protocols used.

The result of cooperative proxy caching is simply to increase the effective client population. That

is, at best, a collection of cooperating caches will achieve the hit rate of a single proxy acting over the

combined population of all the proxies. In reality, the performance will be less than perfect, because

proxies will not have perfect knowledge and will pay the overheads of inter-proxy communication

latency. Examining a single, top-level proxy thus gives us an upper bound on cooperative-caching

performance.

Figure 4.1 graphs hit rate vs. client population size for our traces. The dark black lines in this

graph show the behavior of the university population. The dotted black line shows the “cachable

hit rate,” which corresponds to the hit rate from a practical cache that considers the cachability

characteristics of the documents. Both the shapes of the curves and the cachable hit rates are roughly

consistent with previous proxy cache studies of client traces: [Gribble et al. 97, Kroeger et al. 97]

both report hit rates above 50% (but disregard cookies), [Duska et al. 97] reports hit rates of 40–

45%, and [Caceres et al. 98] reports hit rates of 35% (but exaggerates the effects of cookies, which

can often be cached in HTTP 1.1).

The solid black line in Figure 4.1 shows the “ideal hit rate” of an ideal cache for the UW trace

– one that would be achievable if all shared documents were cachable. In the future, improvements

67

0 5000 10000 15000 20000 25000 30000

Population

0

10

20

30

40

50

60

70

80

90

R
eq

u
es

t
H

it
 R

at
e

(%
)

Ideal (UW)
Cachable (UW)
Ideal (MS)
Cachable (MS)

Figure 4.1: Proxy cache request hit rate as a function of client population.

to Web protocols may move the cachable line closer to the ideal line. On the other hand, future

changes in document characteristics may move the cachable line in either direction.

The grey lines in Figure 4.1 show the behavior of the Microsoft population. It is interesting to

note that the ideal-curve asymptote is higher by about 13% than that of the university environment,

an indication that document sharing within Microsoft is much higher than within the university. This

suggests, not surprisingly, that the Microsoft population is much more homogeneous in its Web-

access behavior than the university population. However, we also see that the Microsoft cachable

curve almost overlies the UW cachable curve. This is a direct reflection of the different distributions

of requests to cachable documents in the traces; 60% of requests in the UW trace go to cachable

documents, but only 51% of requests in the Microsoft trace do so. As a result, even though there

is more sharing among Microsoft users, document cachability currently prevents a Microsoft proxy

cache from achieving a hit rate that is any better than a UW proxy cache.

From this simple figure, we can draw several key conclusions about cooperative caching. The

graphs have a sharp knee at about 2500 clients. The steep increase in hit rate below that knee implies

that a large potential benefit (hit rate increase) could exist from cooperative caching for multiple

proxies with small client populations. For example, given 10 proxies, each handling a population

of a few hundred clients, cooperative caching has the potential to improve significantly the hit ratio

seen by the clients of those proxies. This improvement occurs because the total population served

68

by each proxy increases from 200 to 2000 clients.

It is important to note that the total number of clients (below the knee) that can benefit from

cooperative caching could easily be handled by a single proxy cache for our traces and user popu-

lations. Often this will not be possible, however, because decisions on proxy placement are based

on political or geographical factors, such as company organization, location, and so on. While one

organization may not trust another to proxy all of its requests, it may be willing to cooperate with

other proxies for performance reasons.

Figure 4.1 also shows that hit rate increases very slowly with client population once past the knee

of the curve. It is therefore not clear whether cooperative caching is beneficial in this region, for

proxies whose populations are already above a few thousand clients. We will explore this question

in more detail below.

4.6 Latency and Bandwidth

While many caching studies focus on hit rate, in the Web environment it is ultimately latency, not hit

rate, that is crucial to clients. From the perspective of Internet service providers, hit rate translates

into bandwidth savings over costly Internet links. These bandwidth savings can also reduce wide-

area network congestion, potentially improving the performance of the Internet as a whole.

Figure 4.2 shows document latency in our university trace as a function of the number of clients

using a proxy cache. The top three lines, from top to bottom, show mean last-byte latency: (1) with-

out a proxy cache (i.e., as extracted from the trace), (2) with a proxy cache respecting cachability,

and (3) with an ideal proxy cache. The bottom three lines show median last-byte latency under the

same three conditions. Note that, unlike other curves, the error bars on the median lines correspond

to the minimum and maximum median values among the trials at each population size. The three

mean lines level out quickly, while the medians are essentially flat. This implies that caching will

have little impact on mean and median latency beyond very small client populations. The mean

trace curve is not constant, because each point represents requests from different client population

samples, and mean latency will vary from one sample to another.

In Figure 4.2, the mean latency is much higher than the median owing to many high-latency

documents. Can cooperative caching reduce the percentage of these high-latency documents? Fig-

69

0 5000 10000 15000 20000

Population

0

500

1000

1500

2000

O
b

je
ct

 L
at

en
cy

 (
m

s)

Mean No Cache
Mean Cachable
Mean Ideal
Median No Cache
Median Cachable
Median Ideal

Figure 4.2: Mean and median request latency as a function of client population for the UW trace.
The error bars on the median curves are the min and max medians across the trials.

ure 4.3 implies that this is not the case; it shows the percentage of documents with a last-byte latency

below two seconds for the three caching policies described above. When graphed as a function of

population, this percentage is effectively a horizontal line for all three policies with very little dif-

ference among them. The ideal line is the highest (90%), and no cache is the lowest (82%). The

insensitivity to population size and closeness of these values demonstrate that neither cachability

nor increasing population will significantly reduce the number of high-latency documents. Our

trace analysis indicates that these documents are slow due to document size, network latency (e.g.,

from congestion, low-bandwidth links, long distances), or both. Also, as described below, shared

documents tend to be smaller than non-shared ones, biasing misses towards larger documents that

consequently take longer to download.

A final dimension is bandwidth. Figure 4.4 shows the byte hit rate as a function of client pop-

ulation for the university trace. Once again, we see a knee in the curve at around 2500 clients.

Comparing these results to the hit rates given in Figure 4.1, we can conclude that shared objects

are smaller on average than other objects. Figure 4.5 shows the average bandwidth consumed as

a function of client population for the three caching situations. We see that while caching reduces

70

0 5000 10000 15000 20000

Population

0

20

40

60

80

%
 O

b
je

ct
s

w
/ L

at
en

cy
 <

 2
 s

ec

Threshold Ideal
Threshold Cachable
Threshold No Cache

Figure 4.3: Fraction of requests completed in less than two seconds for the UW trace.

bandwidth consumption compared to no caching, there is no benefit to increased client population

(i.e., there is no decrease in the slope of the bandwidth line).

4.7 Proxies and Organizations

We produced Figures 4.1 and 4.4 by computing the hit rate of random subsets of clients at each

population size; therefore, the figures assume that all clients are essentially identical in their access

patterns. A crucial question is whether clients in a single organization, sharing a single proxy, have

more in common with each other than with clients in different organizations sharing other proxies.

If there is high locality within organizations, then populations smaller than the knee in Figure 4.1

could achieve the maximum hit rate. What benefit would clients in real organizations see if their

proxies were to cooperate with other real organizational proxies?

To answer this question is difficult, because it requires a simultaneous trace of a large number

of proxies in the Internet. Such traces have not existed in the past. We have tried to answer the

question in our university environment, using UW as a small-scale model of the broader networked

community. The University of Washington consists of a large collection of diverse organizations

– e.g., museums of art and natural history, schools of nursing and dentistry, and departments such

as music, Scandinavian languages, and computer science. Think of each such organization as an

71

0 5000 10000 15000 20000

Population

0

10

20

30

40

50

60

B
yt

e
H

it
 R

at
e

(%
)

Ideal
Cachable

Figure 4.4: Proxy cache byte hit rate as a function of client population for the UW trace.

0 5000 10000 15000 20000

Population

0

1

2

3

4

5

M
ea

n
 B

an
d

w
id

th
 (

M
b

it
s/

s) No Cache
Cachable
Ideal

Figure 4.5: Bandwidth consumed as a function of client population for the UW trace.

72

independent business entity, with its own interests and focus, which would typically have its own

proxy sitting on its connection to the Internet.

In fact, somewhat fortuitously, few organizations on our campus currently employ proxies; this

permits us to see most outgoing client requests and their responses. In our tracing software, before

anonymizing each client’s IP address, we first classify that client as belonging to one of about

200 independent university organizations. In this way, we preserve organizational membership

information while protecting client identities. In effect, this gives us a simultaneous trace of Web

requests from 200 organizations.

Figure 4.6 shows the ideal (left-hand bar) and cachable (right-hand bar) hit rates for the 15 largest

UW organizations. The bars are labeled on the x-axis with the number of clients seen in the trace

for each of the organizations shown: the smallest organization had 192 clients, while the largest had

978 clients. These bars thus represent 15 medium-sized companies or client communities.

The lower portion of each bar shows the hit rate that would be seen by a local proxy acting on

behalf of that organization. The upper portion of the bar shows the improvement in hit rate that

would be seen by that organization if all of the university’s organizations used perfectly cooperating

proxies. For the ideal bars, the average hit rate per group is 52%. The average cooperative-caching

hit rate, i.e., the rate that would be seen by a single proxy over all organizations or by a perfect

cooperative-caching scheme, is 69%. For the cachable hit rate bars, the average hit rate per group

is 29%, and the average cooperative hit rate is 38%. Therefore, if perfect cooperative caching were

possible, it would achieve a noticeable improvement in hit rate for these proxies.

An interesting question raised above is whether clients in our UW population request documents

randomly, or whether their access patterns are related in some way to those of other members of

the same organization. To answer this question, we grouped clients at random into organizations

with the same sizes as the 200 real organizations and compared local hit rates. Figure 4.7 shows

a comparison of the hit rates for the 15 largest UW and randomly assigned organizations. The

result indicates that there is a small average increase (about 4 percentage points) in hit rates for the

real organizations compared to the randomly assigned ones. Therefore, there is some locality in

organizational membership, but the impact is not large in this case.

A related question is whether a better grouping exists of clients to proxies – for example, one

based on each client’s document interests. To examine this question, we conducted a clustering

73

97
8

73
5

48
0

42
5

39
2

33
7

25
1

24
6

23
9

22
8

22
2

21
9

21
3

20
0

19
2

15 Largest Organizations

0

10

20

30

40

50

60

70

80

90

100

H
it

 R
at

e
(%

)

Ideal Cooperative
Ideal Local
Cachable Cooperative
Cachable Local

Figure 4.6: Breakdown of local and global proxy hit rates for the 15 largest UW organizations.

97
8

73
5

48
0

42
5

39
2

33
7

25
1

24
6

23
9

22
8

22
2

21
9

21
3

20
0

19
2

15 Largest Organizations

0

10

20

30

40

50

60

70

H
it

 R
at

e
(%

)

UW
Random

Figure 4.7: Comparison of the proxy hit rates for the 15 largest UW and randomly populated orga-
nizations.

74

study. Using the trace data, we clustered clients based on their document access vectors, using a

standard clustering algorithm (K-Means) that attempts to optimize intra-cluster sharing. The exis-

tence of such groupings within the university might imply the existence of an improved wide-area

caching scheme based on clustering.

As with the university organizations, we compared the cluster-based client assignments to ran-

dom assignments of clients into groups of the same size. The randomly assigned clusters have a

consistently lower hit rate than the optimally clustered organizations. Somewhat surprisingly, the

difference between the two assignments is just slightly more than the difference between the UW

and random organizations (about 5 percentage points). Again, there is some affinity in client access

patterns, but the impact on hit rate is not large.

4.8 Impact of Larger Population Size

We have seen that cooperative caching can increase hit rate, perhaps substantially, below the knee of

the curve in Figure 4.1. What happens above the knee, i.e., can cooperative caching be effective in a

wide-area network? Figure 4.8 shows the data from Figure 4.1 when it has been plotted as a function

of the log of the client population size, fitted linearly using least squares, and then extrapolated past

the client population we measured.

This graph suggests a number of interesting conclusions. First, the slopes of the UW lines are

greater than of the Microsoft lines, a relation we could only infer from Figure 4.1. Second, we notice

that the slopes of the UW ideal and cachable lines are similar. This indicates that there is little corre-

lation between sharing and the cachability of documents for the UW population. However, the slope

of the Microsoft cachable line is only 60% of the slope of the ideal line. This indicates that cachable

documents were shared to a lesser degree than uncachable documents for the Microsoft population.

Third, the cachability curves are limited by the fraction of requests to cachable documents, which

is 60% in the UW trace and 51% in the Microsoft trace. In both of these cases, cooperative caching

among populations larger than 2.4 million does not increase the hit rate to cachable documents.

Fourth, even if all documents were cachable, the ideal hit rate reaches a maximum at a population

of 11 million users for the UW trace and 2.9 million for the Microsoft trace.

The Microsoft client population is more homogeneous than the university population and there-

75

1 10 10^2 10^3 10^4 10^5 10^6 10^7 10^8

Population

0

20

40

60

80

100

H
it

 R
at

e
(%

)

Ideal (UW)
Cachable (UW)
Ideal (MS)
Cachable (MS)

Figure 4.8: Proxy cache hit rate as a function of client population.

fore sees a higher degree of document sharing. Quantitatively, 83.8% of requests in the Microsoft

trace are to previously requested documents; in the UW trace, 70.8% of requests are to previously

requested documents. These statistics are the “ideal hit rates” that would be seen by a cache, if all

documents were cachable. But how much overlap is there to popular documents between the two

populations? We looked at the most popular documents requested by each of the two populations,

where we defined “most popular” to be those documents accessed more than 500 times. In the UW

trace, there were 11,500 such documents, and in the Microsoft trace, there were 17,000 such doc-

uments. Looking at the 1000 most popular in each of the two populations, we see a 33% overlap;

that is, of the 1000 most-popular documents accessed by Microsoft, 330 of them are also among the

1000 most popular accessed by UW. Therefore, many of the same documents are popular in both

organizations.

In related work [Wolman et al. 99b], we present an analytical model to look in more detail at the

behavior of cooperative caching in large-scale environments. Within the context of our own traces,

though, we can perform an interesting experiment to create a larger population. Suppose that we

implemented cooperative caching between the University of Washington and the Microsoft proxies.

From the perspective of the UW proxy, this increases the size of the population it sees by a factor of

3.6; from the point of view of the Microsoft proxy, population increases by a factor of 1.4. What is

the impact of combining the two populations through cooperative caching?

76

To estimate the benefit of cooperative caching between the two organizations, we did the fol-

lowing analysis. We ran the university trace through a simulated UW proxy; we then fed all misses

to a second-level (cooperating) proxy preloaded with all of the objects seen in the Microsoft trace.

Similarly, we ran the Microsoft trace simulating its proxy, with a second-level proxy preloaded with

all objects seen by the UW trace. This gives us an idea of the maximum incremental hit-rate benefit

each proxy would see if the two proxies were to cooperate.

Figure 4.9 shows the results of this measurement. From the figure, we see that the UW proxy,

whose effective population would increase 3.6-fold (from 23,000 to 83,000 clients), would see its

ideal hit rate increase only 5.1 percentage points – from 70.1% to 75.9%; its cachable hit rate would

increase only 4.2 percentage points – from 42.7% to 46.9%. The Microsoft proxy, whose effective

population would increase by a factor of 1.4 (from 60,000 to 83,000 clients), would see its ideal hit

rate increase 2.7 percentage points – from 83.8% to 86.5%; its cachable hit rate would increase only

2.1 percentage points – from 42.3% to 44.4%. To allow a more direct comparison of these results, we

ran another experiment where the second-level cooperating proxy was preloaded by only a portion

of the Microsoft population, thereby increasing the effective population size for the UW population

by the same factor of 1.4. In this experiment, the ideal hit rate for the UW proxy increased by 1.6

percentage points, and the cachable hit rate increased by 1.3 percentage points. When scaled by

equal factors, it is interesting to note that Microsoft gains more benefit by cooperating with the UW

population than the UW population gains by cooperating with Microsoft.

These results are disappointing, but not surprising. The reason for these very small increases is

that the unpopular documents are universally unpopular; therefore, it is unlikely that a miss in one of

these large populations will find the document in the other population’s proxy. For the most-popular

documents, cooperation does not help either, because only the first access (of the 500 plus accesses

to a popular document) has the potential to benefit from another population’s proxy.

4.9 Summary and Conclusions

This chapter studied cooperative proxy caching in local- and wide-area environments. We col-

lected and analyzed traces from two different large organizations to explore the effectiveness of

cooperative-caching at a wide range of population sizes.

77

U
W

Id
ea

l

U
W

C
ac

ha
bl

e

M
S

Id
ea

l

M
S

C
ac

ha
bl

e

0

20

40

60

80

100

H
it

 R
at

e
(%

)

Cooperative
Local

Figure 4.9: Hit rate benefit of cooperative caching between UW and Microsoft proxies.

At a high level, our results show that:

1. The behavior of cooperative caching is characterized by two different regions of the hit rate

vs. population curve. For smaller populations, hit rate increases rapidly with population; it

is in this region that cooperative caching can be used effectively. However, these population

sizes can be handled by a single proxy. Therefore, cooperative caching is only necessary to

adapt to proxy assignments made for political or geographical reasons.

2. For larger populations (beyond the knee of the population vs. hit rate curve), cooperative

caching is unlikely to provide significant benefit. We demonstrate this using our simultaneous

traces of the Microsoft and the University of Washington populations: a four-fold increase to

the large university population via cooperative caching netted only an increase of 2.7 percent-

age points in cachable hit rate.

3. In the absence of significant changes in client behavior, there is little point in continuing to

expend effort on the design and evaluation of highly scalable, cooperative-caching schemes.

The scale at which cooperative caching makes sense is sufficiently small that any reasonable

scheme will achieve most of the benefit.

4. Performance at the population level at which cooperative caching works effectively is basi-

cally limited by document cachability. Therefore, increasing cachability of documents is the

78

main challenge for research aimed at improving Web cache behavior.

5. Cluster-based analysis of client access patterns indicates that cooperative-caching organi-

zations based on mutual interest offer no obvious advantages over randomly assigned or

organization-based groupings.

Fundamentally, the usefulness of cooperative Web proxy caching depends upon the scale at

which it is being applied. From our trace data of users at the University of Washington and Mi-

crosoft Corporation, cooperative Web proxy caching is an effective architecture for small individual

caches that together comprise user populations in the tens of thousands. At such small scales, any

reasonable cooperative caching scheme will serve. But cooperative caching is not required for user

populations of this size. If it is administratively and politically feasible, a single proxy cache can

provide the same benefits with fewer resources and less overhead.

Whether or not they use cooperative caching locally, large organizations should use proxy

caching for their user populations. A key issue is whether these large organizational caches benefit

from cooperating. Our experimental results indicate that the benefit of cooperation will be small,

and therefore will only make sense if the cost of cooperation is also small. This is most likely to be

the case in very high-bandwidth, low-latency environments.

In a related study not included in this dissertation, we developed an analytic model of Web

behavior to extend beyond the population limits of our trace results. This model permits us to

explore the steady state behavior of caching systems with millions of clients, and it also allows us

to investigate how changes in workload characteristics would affect the importance of cooperative

Web proxy caching in the future. The results of that study reconfirm our finding that cooperative

caching is most effect a limited population sizes.

Finally, we note that our results on cooperative caching are based upon currently observed

Web workload behavior. Fundamental shifts in Web workload characteristics might change these

results. For example, the workloads we have examined consist primarily of static documents.

But we have also observed a growing presence in Web workloads of streaming multimedia traf-

fic [Wolman et al. 99a], and streaming multimedia objects have different characteristics than static

Web objects. Their average size is orders of magnitude larger, so cooperative caching for storage

efficiency becomes more appealing. Furthermore, last-byte latency is not a critical performance

79

metric for streaming data. Instead, reducing jitter and making more effective use of the network be-

come more important. Lastly, given the size of streaming objects, and the relatively long period of

time over which they are transferred over the network, transport optimizations like multicast might

prove more effective.

80

Chapter 5

Measurement and Analysis of a Streaming-Media Workload

5.1 Introduction

Today’s Internet is increasingly used for transfer of continuous-media data, such as video from

news, sports, and entertainment Web sites, and audio from Internet broadcast radio and telephony.

As evidence, a large 1996 Web study from U.C. Berkeley [Gribble et al. 97] found no apprecia-

ble use of streaming media, but our own study three years later at the University of Washington

found that RealAudio and RealVideo had become a considerable component of Web-related traf-

fic [Wolman et al. 99a]. In addition, new peer-to-peer networks such as Napster have dramatically

increased the use of digital audio over the Internet. A 2000 study of the IP traffic workload seen

at the NASA Ames Internet Exchange found that traffic due to Napster rose from 2% to 4% over

the course of 10 months [McCreary et al. 00], and a March 2000 study of Internet traffic at the

University of Wisconsin-Madison found that 23% of its traffic was due to Napster [Plonka 00].

Streaming-media content presents a number of new challenges to systems designers. First, com-

pared to traditional Internet applications such as email and Web browsing, multimedia streams can

require high data rates and consume significant bandwidth. Second, streaming data is often trans-

mitted over UDP [Mena et al. 00], placing responsibility for congestion control on the application

or application-layer protocol. Third, the traffic generated tends to be bursty [Mena et al. 00] and is

highly sensitive to delay. Fourth, streaming-media objects require significantly more storage than

traditional Web objects, potentially increasing the storage requirements of media servers and proxy

caches, and motivating more complex cache replacement policies. Fifth, because media streams

have long durations compared to the request/response nature of traditional Web traffic, multiple si-

multaneous requests to shared media objects introduce the opportunity for using multicast delivery

techniques to reduce the network utilization for transmitting popular media objects. Unfortunately,

despite these new characteristics and the challenges of a rapidly growing traffic component, few

81

detailed studies of multimedia workloads exit.

This chapter presents and analyzes a client-based streaming-media workload. To capture this

workload, we extended our existing HTTP passive network monitor (described in Chapter 6) to

trace key events from multimedia sessions initiated inside the University of Washington to servers

in the Internet. For this analysis, we use a week-long trace of RTSP sessions from 4,786 university

clients to 23,738 distinct streaming-media objects from 866 servers in the Internet, which together

consumed 56 GB of bandwidth.

The primary goal of our analysis is to characterize this streaming-media workload and compare

it to well-studied HTTP Web workloads in terms of bandwidth utilization, server and object popu-

larity, and sharing patterns. In particular, we wish to examine unique aspects of streaming-media

workloads, such as session duration, session bit-rate, and the temporal locality and degree of over-

lap of multiple requests to the same media object. Finally, we wish to consider the effectiveness

of performance optimizations, such as proxy caching and multicast delivery, on streaming-media

workloads.

Our analysis shows that, for our trace, most streaming-media objects accessed by clients are

encoded at low bit-rates (< 56 Kb/s), are modest in size (< 1 MB), and tend to be short in duration

(< 10 mins). However, a small percentage of the requests (3%) are responsible for almost half of the

total bytes downloaded. We find that the distributions of client requests to multimedia servers and

objects are somewhat less skewed towards the popular servers and objects than with traditional Web

requests. We also find that the degree of multimedia object sharing is smaller than for traditional

Web objects for the same client population. Shared multimedia objects do exhibit a high degree of

temporal locality, with 20–40% of active sessions during peak loads sharing streams concurrently;

this suggests that multicast delivery can potentially exploit the multimedia object sharing that exists.

The rest of this chapter is organized as follows. Section 5.2 provides a high-level description of

streaming-media protocols for background. Section 5.3 describes the trace collection methodology.

Section 5.4 presents the basic workload characteristics, while Section 5.5 focuses on our cache

simulation results. Section 5.6 presents our stream merging results. Finally, Section 5.7 concludes.

82

5.2 Streaming Media Background

This section defines a number of terms and concepts that are used throughout this chapter. We use

the term streaming media to refer to the transfer of live or stored multimedia data where the media

player begins rendering as soon as the data is received, rather than waiting for the full download

to complete before rendering begins. Although streaming techniques are typically used to transfer

audio and video streams, they are sometimes used to deliver traditional media (such as streaming text

or still images). A wide variety of streaming-media applications are in use today on the Internet.

They employ a wide variety of protocols and algorithms that can generally be classified into five

categories:

1. Stream control protocols enable users to interactively control playback of the me-

dia stream, e.g., pausing, rewinding, forwarding or stopping stream playback. Exam-

ples of commonly used stream control protocols include RTSP [Schulzrinne et al. 98],

PNA [RealNetworks 01a], MMS [Microsoft 01b] and XDMA [Xingtech 00]. These proto-

cols typically rely on TCP as the underlying transport protocol.

2. Media packet protocols support real-time data delivery and facilitate the synchronization of

multiple streams. These protocols define how a media server encapsulates a media stream

into data packets, and how a media player decodes the received data. Most media packet

protocols rely on UDP to transport the packets. Examples include RDT [RealNetworks 01b],

RTP [Schulzrinne et al. 96], PNA [RealNetworks 01a], MMSU and MMST [Microsoft 01b].

3. Encoding formats dictate how a digitized media stream is represented in a compact

form suitable for streaming. Examples of encoding schemes commonly used include

WMA [Microsoft 01b], MP3 [MPEG-2 Audio 94], MPEG-2 [MPEG-2 Video 94], RealAu-

dio G2 and RealVideo G2 [RealNetworks 01c].

4. Storage formats define how encoded media streams are stored in “container” files, which

hold one or more streams. Headers in the container files can be used to specify the properties

of a stream such as the encoding bit-rate, the object duration, the media content type, and the

83

object name. ASF [Fleischman 98] and RMFF [Agarwal et al. 98] are examples of container

file formats.

5. Metafile formats provide primitives that can be used to identify the components (URLs) in a

media presentation and define their temporal and spatial attributes. SDP [Handley et al. 98],

SMIL [W3C 98] and ASX [Microsoft 01a] are examples of metafile formats.

5.3 Methodology

We collected a continuous trace of RTSP traffic flowing across the border routers serving the Uni-

versity of Washington campus over a one week period between April 18th and April 25th, 2000.

In addition to monitoring RTSP streams, the trace tool also maintained connection counts for

other popular stream control protocols: PNA [RealNetworks 01a] used by Real Networks’ servers,

MMS [Microsoft 01b] used by Microsoft Windows Media servers, and XDMA [Xingtech 00], used

by Xing’s StreamWorks servers. We collected the trace data for this study using our own custom

trace collection software. A detailed description of this trace collection and analysis infrastructure

is covered in Chapter 6. In the remainder of this section, we provide a high-level overview of the

RTSP protocol and the information collected by our tracing system to facilitate interpretation of our

results.

5.3.1 RTSP Trace Collection

Capturing streaming-media traffic is challenging because applications may use a variety of pro-

tocols. Moreover, while efforts have been made to develop common standardized protocols,

many commercial applications continue to use proprietary protocols. Given the diversity of

protocols, we decided to focus initially on the standardized and well documented RTSP proto-

col [Schulzrinne et al. 98]. Widely used media players that support RTSP include Real Networks’

RealPlayer and Apple’s QuickTime Player. In Section 5.4 we provide data that indicates that RTSP

is the most widely used streaming control protocol at the University of Washington during our trace

period.

RTSP, a protocol similar to HTTP, is used by media players and streaming servers to control

84

the transmission of streaming content. In typical operation, the RTSP control traffic is always sent

over TCP whereas the media data is often sent over UDP, and less frequently the media data is

interleaved with the control traffic on the same TCP connection. Figure 5.1 illustrates a common

streaming media usage scenario. First, a user downloads a Web page that contains a link to a media

presentation. This link points to a metafile hosted by the media server. The Web browser then

downloads the metafile that contains RTSP URLs for all the multimedia objects in the presentation

(e.g., a music clip and streaming text associated with the audio). Next, the browser launches the

appropriate media player and passes the metafile contents to the player. The media player in turn

parses the metafile and initiates an RTSP connection to the media server.

Many of our analysis results will refer to an RTSP “session.” An RTSP session is similar to an

HTTP “GET” request, in that typically there will be one session for each access to the object. A

session begins when the media player first accesses the object, and it ends when the media player

sends a TEARDOWN message, though there may be a number of intervening PAUSE and PLAY

events. There is not a one-to-one mapping between sessions and RTSP control connections; instead,

the protocol relies on session identifiers to distinguish among different streams. In order to make

our results easier to understand, when a single RTSP session accesses multiple objects, we consider

it to be multiple sessions – one for each object.

We extended our existing HTTP passive network monitor to support monitoring the RTSP

streaming-media protocol. The RTSP protocol parsing module extracts pertinent information from

RTSP headers such as media stream object names (URLs), transport parameters, and stream play

ranges. Data in the RTSP control connections is also used to determine which UDP datagrams to

look at when the media data is not interleaved. We record timing and size information about the

UDP data transfers, but we do not attempt to process the contents of media stream packets because

almost all commonly used encoding formats and packet protocols are proprietary. All sensitive in-

formation extracted by the parser, such as IP addresses and URLs, is anonymized to protect user

privacy.

85

Web
Server

Client
Browser

Player
Media Media

Server

Contents
4. Media Metafile

5. Media Metafile
Contents

3. Media Metafile
 Download Request

2. Page Contents

1. Page Download Request

6. Stream Control

7. Stream Control/Data

Figure 5.1: A typical initialization sequence for viewing streaming media content.

5.4 Workload Characterization

This section analyzes the basic characteristics of our streaming-media workload; when appropriate

we compare these characteristics to those of standard Web object workloads. The analysis ignores

non-continuous media data (e.g., streaming text and still images). Since we were interested in the

access patterns of the UW client population, we ignored sessions initiated by clients external to UW

that accessed servers inside the campus network.

Table 5.1 summarizes the high-level characteristics of the trace. During this one-week period,

4,786 UW clients accessed 23,738 distinct RTSP objects from 866 servers, transferring 56 GB of

streaming media data. Using the connection counts from Table 5.2, we see that RTSP is the most

widely used stream control protocol at the UW during this period. Furthermore, we can use these

connection counts to estimate that RTSP accounts for approximately 40% of all streaming media

usage by UW clients.

The detailed analyses in the following sections examine various attributes of the traffic workload,

such as popularity distributions, object size distributions, sharing patterns, bandwidth utilization,

and temporal locality. Overall, our analysis shows that:

• Most of the streaming data accessed by clients is transmitted at low bit-rates: 81% of the

accesses are transmitted at a bit-rate less that 56 Kb/s.

86

Table 5.1: Overall statistics for the UW RTSP trace.

RTSP Attribute Value

External Servers 866

Continuous Media Total Bytes 56 GB

UW Clients 4786

Continuous Media Sessions 40070

Continuous Media Objects 23738

Other Objects 3760

• Most of the media streams accessed have a short duration (< 10 minutes) and a modest size

(< 1 MB).

• A small percentage of the sessions (3%) are responsible for almost half of the bytes down-

loaded.

• Streaming media sessions are much larger than HTTP responses. The median session size is

400 times larger than the median HTTP response size, and the mean session size is 175 times

larger than the mean HTTP response size.

• The distribution of client requests to objects is Zipf-like, with an α parameter of 0.47.

• While clients do share streaming-media objects, the degree of object sharing is not as high as

that observed in Web traffic traces [Duska et al. 97, Wolman et al. 99a].

• There is a high degree of temporal locality in client requests to repeatedly accessed objects.

5.4.1 Bandwidth Utilization

Figure 5.2 shows a time-series plot of the aggregate bandwidth consumed by clients streaming ani-

mations, audio, and video data. We see that the offered load on the network follows a diurnal cycle,

87

Table 5.2: Stream control protocol connection counts.

Protocol Count

RTSP 58808

MMS 44878

PNA 35230

XDMA 3930

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

500

1000

1500

2000

2500

B
an

d
w

id
th

 (
K

b
it

s/
s)

Figure 5.2: Total bandwidth used over time (in Kbits/sec).

with peaks generally between 11 AM and 4 PM. The volume of traffic is significantly lower during

weekends; peak bandwidth over a five-minute period was 2.8 Mb/s during weekdays, compared to

1.3 Mb/s on weekends. We found that, on average, clients received streaming content at the rate of

66 Kb/s. This bit-rate is much lower than both the internal UW link capacities (usually 10 Mbps

or 100 Mbps) and the current UW ISP link capacity (200 Mbps). We conclude from the preva-

lence of these low-bit-rate sessions that the sites that clients are accessing encode streaming content

primarily at modem bit-rates, the lowest common denominator.

88

5.4.2 Advertised Stream Length

In this section, we provide a detailed analysis of the advertised duration of continuous media streams

referenced during the trace. Note that the advertised duration of a stream is different from the length

of time that the client actually downloads the stream (e.g., if the user hits the stop button before

the stream is finished). Since media servers generally do not advertise the duration of live streams,

we limit our analysis to on-demand (stored) media streams. Sessions accessing these on-demand

streams account for 85% of all sessions.

Figure 5.3a presents a histogram of all streams lasting less than seven minutes, and Figure 5.3b

plots the cumulative distribution of all stream lengths advertised by media servers. The peaks in

the histogram in Figure 5.3a indicate that many streams are extremely short (less than a minute),

but the most common stream lengths are between 2.5 and 4.5 minutes. These results suggest that

clients have a stronger preference for viewing short multimedia streams. One important observation

from Figure 5.3b is that the stream-length distribution has a long tail. Although the vast majority

of the streams (93%) have a duration of less than 10 minutes, the remaining 7% of the objects have

advertised lengths that range between 10 minutes and 6 weeks.

In Figure 5.4, we separate stream accesses into two categories. The grey curve shows the cu-

mulative distribution of advertised stream lengths for those stream accesses made by clients in the

campus modem pool, and the black curve shows the cumulative distribution of advertised stream

lengths for streams accessed by clients connected by high-speed department LANs. From this fig-

ure, we see that 40% of the streams accessed by modem clients have an advertised length less than

100 seconds, whereas for LAN clients only 23% of the streams have an advertised length less than

100 seconds. This reconfirms our expectation that clients with poor connectivity are somewhat more

likely to access shorter streaming-media content.

In Figure 5.5, we examine the relationship between the advertised stream length and the actual

download stream length. These two lengths can differ if the client terminates viewing the stream

before the stream has finished downloading, or they can differ if the server simply advertises an

inaccurate stream length. The largest gap between the two curves in this figure occurs for streams

that last less than 3 minutes. This indicates that clients often choose to terminate streams early, and

this termination usually occurs within the first few minutes of viewing the stream.

89

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

Seconds

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

o

f
S

es
si

o
n

s

1 10 100 1000 10000 100000

Seconds

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

tr
ea

m
s

Figure 5.3: The left graph (a) shows a histogram of advertised stream lengths for all streams less
than 7 minutes. The right graph (b) shows the cumulative distribution of advertised stream lengths.

1 10 100 1000 10000 100000

Seconds

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

tr
ea

m
s

LAN
Modem

Figure 5.4: Cumulative distributions of advertised stream lengths for modem clients and LAN
clients.

90

0.1 1.0 10.0 100.0 1000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

Advertised Length
Download Length

Figure 5.5: Comparison of the stream download length cumulative distribution and the advertised
stream length cumulative distribution.

5.4.3 Session Characteristics

In this section, we examine two closely related properties of sessions: the amount of time that a

client spends accessing a media stream, and the number of bytes downloaded during a stream access.

In Figure 5.6 we present the relationship between the duration of a streaming-media session and the

number of bytes transferred. In Figure 5.7 we look at the distinguishing characteristics between

sessions accessing shared objects and sessions accessing unshared objects. Finally, in Figure 5.8 we

compare the size and duration characteristics of sessions from clients in the campus modem pool to

sessions from clients connected by high-speed department LANs.

A number of important trends emerge from these graphs. First, we see that client sessions tend

to be short. From Figure 5.7a we see that 85% of all sessions (the solid black line) lasted less than

5 minutes, and the median session duration was 2.2 minutes. The bandwidth consumed by most

sessions was also relatively modest. From Figure 5.7b we see that 84% of the sessions transferred

less than 1 MB of data and only 5% accessed more than 5 MB. In terms of bytes downloaded,

the median session size was 0.5 MB. Both the session duration and the session size distributions

have long tails: 20 sessions accessed more than 100 MB of data each, while 57 sessions remained

91

0.0 0.1 1.0 10.0 100.0 1000.0 10000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
B

yt
es

 S
tr

ea
m

ed

Figure 5.6: Cumulative distribution of bytes transferred by sessions of a given length.

active for at least 6 hours, and one session was active for 4 days. Although the long-lived sessions

(> 1 hour) account for only 3% of all client sessions, these sessions account for about half of the

bandwidth consumed by the workload. From Figure 5.6 we see that these long sessions account for

47% of all bytes downloaded. The size of a typical streaming media session is considerably larger

than the size of a typical Web request. In our RTSP trace, we found that the median session size

was 0.5 MB, and the mean session size was 1.4 MB. In our HTTP trace of the same population

collected one year earlier, we found that the median response size was just over 1 KB and the mean

response size was 8 KB. Therefore, when comparing medians we see that streaming media sessions

are 400 times larger than HTTP responses, and when comparing means we see that streaming media

sessions are 175 times larger than HTTP responses.

Most of the media objects accessed are downloaded at relatively low bit-rates despite the fact

that most of the clients are connected by high-speed links. Using the raw data from Figure 5.6, we

calculated that 81% of the streams are downloaded at bit-rates less than 56 Kb/s (the peak bandwidth

supported by most modems today). In Figure 5.8, we separate all the trace sessions into those made

from clients in the modem pool and those made from LAN clients. Although it does appear that

the duration of modem sessions is shorter than the duration of LAN sessions (Figure 5.8a), the

difference is not large. On the other hand, the difference in bytes downloaded between modem

92

0.1 1.0 10.0 100.0 1000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

All
Shared
Unshared

1 10 100 1000 10000 100000

Session Size (KB)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s

Figure 5.7: Shared and unshared session characteristics. The left graph (a) shows the cumulative
distribution of session download lengths for all, shared, and unshared sessions. The right graph (b)
shows the cumulative distribution of session sizes for all, shared, and unshared sessions.

sessions and LAN sessions (Figure 5.8b) appears to be much more pronounced. For modem users,

the median session size is just 97 KB, whereas for LAN users it is more than 500 KB.

Figures 5.7a and 5.7b also distinguish between accesses to shared objects (the dashed lines)

and accesses to unshared objects (the grey lines). A shared object is one that is accessed by more

than one client in the trace; an unshared object is accessed by only one client, although it may

be accessed multiple times. Overall, sessions that request shared objects tend to be shorter than

sessions accessing unshared objects. For example, 46% of shared sessions lasted less than one

minute, compared with only 30% of the unshared sessions. Furthermore, we found that most of

the sessions accessing shared objects transferred less data than unshared sessions. For example,

44% of shared sessions transferred less than 200 KB of data compared to only 24% of unshared

sessions. However, Figure 5.7 shows that the situation changes for sessions on the tails of both

curves, where the sessions accessing shared objects are somewhat longer and larger than sessions

accessing unshared objects.

93

0.1 1.0 10.0 100.0 1000.0

Session Length (Minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s
Modem
LAN

1 10 100 1000 10000 100000

Session Size (KB)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
S

es
si

o
n

s
Figure 5.8: Modem and LAN session characteristics. The left graph (a) shows the cumulative
distribution of session download lengths for modem and LAN sessions. The right graph (b) shows
the cumulative distribution of session sizes for modem and LAN sessions.

5.4.4 Server Popularity

In this section we examine the popularity of media servers and objects. Figure 5.9 plots (a) the

cumulative distribution of continuous media objects across the 866 distinct servers referenced, as

well as (b) the cumulative distribution of requests to these servers. These graphs show that client

load is heavily skewed towards the popular servers. For example, 80% of the streaming-media

sessions were served by the top 58 (7%) media servers, and 80% of the streaming-media objects

originated from the 33 (4%) most popular servers. This skew to popular servers is slightly less

pronounced than for requests to non-streaming Web objects. From a May 1999 trace of the same

client population, 80% of the requests to non-streaming Web objects were served by the top 3% of

Web servers [Wolman et al. 99a].

5.4.5 Object Popularity

One of the goals of our analysis was to understand how client requests were distributed over the set

of multimedia streams accessed during the trace period. To determine this, we ranked multimedia

objects by popularity (based on the number of accesses to each stream) and plotted the results on

94

0 100 200 300 400 500 600 700 800

Server Number

0

10

20

30

40

50

60

70

80

90

100
%

 o
f

O
b

je
ct

s/
S

es
si

o
n

s
S

er
ve

d

Objects
Sessions

Figure 5.9: Cumulative distribution of server popularity (in terms of both objects and sessions).

the log-scale graph shown in Figure 5.10. Our analysis found that of the 23,738 media objects refer-

enced, 78% were accessed only once. Only 1% of the objects were accessed by ten or more sessions,

and the 12 most popular objects were accessed more than 100 times each. From Figure 5.10, one

can see that the popularity distribution fits a straight line fairly well, which implies that the distribu-

tion is Zipf-like [Breslau et al. 99]. Using the least squares method, we calculated the α parameter

to be 0.47. In contrast, the α parameters reported in [Breslau et al. 99] for HTTP proxies ranged

from 0.64 to 0.83. The implication is that accesses to streaming-media objects are somewhat less

concentrated on the popular objects in comparison with previously reported Web object popularity

distributions.

5.4.6 Sharing patterns

In this section we explore the sharing patterns of streaming-media objects among clients. We first

examine the most popular objects to determine whether the repeated accesses come from a single

client, or whether those popular objects are widely shared. In Figure 5.11, we compute the number

of unique clients that access each of the 200 most popular streaming-media objects. This figure

shows that the most popular streams are widely shared, and that as the popularity declines, so does

the number of unique clients that access the stream.

95

1 10 10
0

10
00

10
00

0

Object Number (log)

1

10

100

1000

o

f
A

cc
es

se
s

(l
o

g
)

Figure 5.10: Object popularity by number of sessions. Note that both x- and y-axes use a log scale.

Figure 5.12 presents per-object sharing statistics. Of the streaming-media objects requested,

only 1.6% were accessed by five or more clients, while 84% were viewed by only one client. Only

16% of the objects were shared (i.e., accessed by two or more clients), yet requests for these shared

objects account for 40% of all sessions recorded. From this data, we conclude that the shared objects

are also more frequently accessed and can therefore benefit from caching. Note, however, that the

degree of object sharing is low compared to the sharing rate for Web documents [Duska et al. 97,

Wolman et al. 99a]. Consequently, multimedia caching may not be as effective as Web caching in

improving performance.

Figure 5.13 shows the overlap among accesses to the shared media objects by plotting the num-

ber of sessions that access unshared objects (black) and the number of sessions that access shared

objects (grey) over time for the entire trace. During peak load periods between 11 AM and 4 PM

(weekdays), we see that 20%–40% of the active sessions share streams concurrently. This temporal

locality suggests that (1) caching will work best when it is needed the most (during peak loads), and

that (2) multicast delivery has the opportunity to exploit temporal locality and considerably reduce

network utilization.

96

0 25 50 75 100 125 150 175

Object Number

0

50

100

150

o
f

U
n

iq
u

e
C

lie
n

ts

Figure 5.11: Number of unique clients that access the 200 most popular objects in the trace. The
x-axis shows objects ordered from left to right by the total number of accesses to each object.

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Object Number

1

10

100

1000

o

f
U

n
iq

u
e

C
lie

n
ts

Figure 5.12: Object sharing. The x-axis shows objects ordered from left to right by the number of
unique clients that access each object.

97

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

50

100

150
S

es
si

o
n

s
p

er
 1

0
se

co
n

d
s

Sessions Accessing Shared Objects
Sessions Accessing Unshared Objects

Figure 5.13: Concurrent sharing over time. The trace is divided up into 10 second segments, and
a session is classified as shared if there are multiple clients that access the same object during that
same segment.

5.5 Caching

Caching is an important performance optimization for standard Web objects. It has been used ef-

fectively for HTTP to reduce average download latency, network utilization, and server load. Given

the large sizes of streaming-media objects and the significant network bandwidth that they can con-

sume, caching may also be important for improving the delivery of streaming-media objects. Note,

however, that the motivation for deploying proxy caches for streaming-media objects is somewhat

different than for HTTP objects. Proxy cache hits for streaming objects do not improve the down-

load latency on behalf of individual users. Instead, for a shared access links of an ISP, a proxy cache

may reduce network utilization on that link. If caching of streaming objects is widely deployed,

it can also reduce server load which effectively increases the peak capacity of a streaming-media

server. In this section, we study the potential benefits of proxy caching for streaming-media objects.

In particular, we determine cache hit rates and bandwidth savings for our workload, explore the

tradeoff of cache storage and hit rate, and examine the sensitivity of hit rate to eviction timeouts.

We use a simulator to model a streaming media caching system for our analyses. The simulator

caches the entire portion of any on-demand stream retrieved by a client, making the simplifying as-

98

sumption that it is allowed to cache all stored media objects. For live streams, the simulator assumes

that the cache can effectively merge multiple client accesses to the same live stream by caching a

fixed-size sliding interval of bytes from that stream [Eager et al. 00]. The simulator assumes unlim-

ited cache capacity, and it uses a timeout-based cache eviction policy to expire cached objects. For

Figures 5.14, 5.15, and 5.16, an object is removed from the cache two hours after the end of the

most recent access.

The results of the simulation are presented in the set of graphs below. Figure 5.14 is a time-series

plot showing cache size growth over time, while Figure 5.15 shows potential bandwidth savings

due to caching. The total height of each bar in the stacked bar graph in Figure 5.16 reflects the

total number of client accesses started within a one-hour time window. The lightest area of the

graph shows the number of accesses that requested fully-cached objects; the medium-grey section

represents the number of accesses that resulted in partial cache hits. Partial cache hits are recorded

when a later request retrieves a larger portion of the media stream than was previously accessed.

The height of the darkest part of the graph represents the number of accesses that resulted in cache

misses.

Since streaming objects are comparatively large in size, the replacement policy for streaming

proxy caches may be an important design decision. Many proposed designs for streaming proxy

caches assume that multimedia streams are too large to be cached in their entirety [Rejaie et al. 99,

Sen et al. 99]. As a result, specialized caches are designed to cache only selected portions of a

media stream; uncached portions of the stream have to be retrieved from the server (or neighboring

caches) to satisfy client requests.

To determine the need for these complex caching strategies, we explored the sensitivity of hit rate

to cache replacement eviction policies by varying the timeout for cached objects. Using the default

two hour expiration of our simulator, we found that the simulated cache achieved an aggregate

request hit rate of 24% (including partial cache hits) and a byte hit rate of 24% using less than

940 MB of cache storage. Because the required cache size is relatively small (when compared

to the total 56 GB of data transferred), it appears that conventional caching techniques and short

expiration times might be just as effective as specialized streaming media caching schemes for

client populations similar to this.

Figure 5.17 plots request and byte hit rates as object eviction time is increased from 5 minutes

99

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

100

200

300

400

500

600

700

800

900

C
ac

h
e

S
iz

e
(M

B
)

Figure 5.14: Cache size growth over time. This graph shows the total storage requirements of a
simulated streaming-media proxy cache over the trace period.

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

500

1000

1500

2000

2500

B
an

d
w

id
th

 (
K

b
it

s/
s)

Bandwidth Saved
Bandwidth Used

Figure 5.15: Bandwidth saved over time due to proxy caching.

100

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

Time

0

200

400

600

800

A
cc

es
se

s
P

er
 H

o
u

r Partial Hits
Cache Hits
Cache Misses

Figure 5.16: Cache accesses: Hits, partial hits, and misses.

up to the entire 7 day trace duration. Notice that reducing the caching window to 5 minutes still

yields reasonably high request hit rates (20%). By keeping objects in the cache for only two hours

after the last access, we achieve 90% of the maximum possible byte hit rate for this workload while

saving significant storage overhead. From this data, we can infer that requests to streaming-media

objects that are accessed at least twice have a high degree of temporal locality.

5.6 Stream Merging

Stream merging is a recently developed technique that uses multicast to reduce the bandwidth re-

quirements for delivering on-demand streaming media. The details of stream merging are covered

extensively in [Eager et al. 99, Eager et al. 00]. In this section we provide a high level overview of

stream merging to motivate our measurements.

Stream merging occurs when a new client requests a stream that is already in transmission. In

this case, the server begins sending the client two streams simultaneously: (1) a “patch stream” start-

ing at the beginning of the client’s request, and (2) a multicast stream of the existing transmission in

progress. The new client buffers the multicast stream while displaying the patch stream. When the

patch stream is exhausted, the client displays the multicast stream from its buffer while it continues

to receive and buffer the simultaneous multicast stream ahead of the display. At the merge point,

101

5
m

in
ut

es

15
 m

in
ut

es

30
 m

in
ut

es

1
ho

ur
s

2
ho

ur
s

4
ho

ur
s

1
da

ys

2
da

ys

4
da

ys

7
da

ys

Object Eviction Time

0

10

20

30

40

50

60

H
it

 R
at

e

Request Hit Rate
Byte Hit Rate

Figure 5.17: Effect of eviction time on cache hit rates.

only one stream, via multicast, is being transmitted to both clients. The cost of stream merging is

that clients must be able to receive data faster than the required stream playback rate and must buffer

the additional data.

To evaluate the effectiveness of stream merging for our workload, we consider consecutive over-

lapping accesses to each stream object in our trace and calculate the time it takes to reach the merge

point based on [Eager et al. 00]. Given the time of the merge point, we then calculate what percent-

age of the overlap period occurs after the merge point. This corresponds to the percentage of time

that only one stream is being transmitted via multicast to both clients. The results of this analysis

are shown as a cumulative distribution in Figure 5.18. Because this stream merging technique is

only needed for on-demand streams, live streams are not included in Figure 5.18. This figure shows

that stream merging is quite effective for this workload – for more than 50% of the overlapping

stream accesses, shared multicast can be used for at least 80% of the overlap period. This result

indicates strong temporal locality in our trace, which is consistent with our concurrent sharing and

cache simulation results.

102

0.00 0.20 0.40 0.60 0.80 1.00

Fraction of Time Merged

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
O

ve
rl

ap
p

in
g

 S
tr

ea
m

s

Figure 5.18: Effectiveness of stream merging. This graph shows the cumulative distribution of the
time merged for those streams with overlapping accesses.

5.7 Conclusion

We have collected and analyzed a one-week trace of all RTSP client activity originating from a large

university. In our analyses, we characterized our streaming multimedia workload and compared it to

well-studied HTTP Web workloads in terms of bandwidth utilization, server and object popularity,

and sharing patterns. In particular, we examined aspects unique to streaming-media workloads, such

as session duration, session bit-rate, temporal locality, and the degree of overlap of multiple requests

to the same media object. We also explored the effectiveness of performance optimizations, such as

proxy caching and multicast delivery, on streaming-media workloads.

Our results show that:

• Streaming media sessions are much larger than HTTP responses. The median RTSP session

size is 400 times larger than the median HTTP response size, and the mean RTSP session size

is 175 times larger than the mean HTTP response size.

• Most streaming media objects are modest in size (< 1 MB), are encoded at relatively low

bit-rates (< 56 Kb/sec), and are short in duration (< 10 mins).

103

• It appears that current streaming-media workloads benefit less from proxy caching, on aver-

age, than traditional HTTP workloads. The α parameter of the Zipf-like popularity distribu-

tion for our RTSP workload was 0.47, whereas typical values for HTTP workloads range from

0.6 to 0.8. Furthermore, the byte hit-rate for an ideal RTSP proxy cache with our workload

was 26%, compared with a 54% byte hit-rate for an ideal HTTP proxy cache serving the same

population measured a year earlier.

• Our streaming-media workload exhibits stronger temporal locality than expected. During

peak load periods, between 20% and 40% of all stream accesses are concurrent accesses. This

suggests that multicast and stream-merging techniques may prove useful for these workloads.

Our results are fundamentally based upon the workload that we captured and observed. It is

clear that usage of streaming media in our environment is still relatively small, and our results could

change as the use of streaming media becomes more prevalent. Our one-week trace contains only

40,000 sessions from fewer than 5,000 clients. A one-week trace of Web activity for the same

population about a year earlier showed more than 22,000 active clients and more than 80 million

Web requests during one week. Shifts in technology use, such as the widespread use of DSL and

cable modems, will likely increase the use of streaming media and possibly change underlying

session characteristics. As the use of streaming media matures in the Internet environment, further

client workload studies will be required to update our understanding of the impact of streaming-

media data.

104

Chapter 6

The Design and Implementation of an Application-Level Internet Tracing System

6.1 Introduction

The ability to measure Web traffic characteristics is important to Web software developers, Web

protocol designers, Web content providers, and Internet service providers. Web software developers

and protocol designers can learn how their software is used by studying Web traffic characteristics.

They can better understand any performance problems that their software exhibits, thereby allowing

them to make informed decisions about which components to optimize and how to fine tune any

configuration parameters of their software to achieve good performance. Web content providers can

learn how to design better Web sites by studying traffic measurements, which provide insight into

user access patterns. Internet service providers can learn about the relative importance of network

applications in terms of the amount of bandwidth each application consumes.

The task of collecting and analyzing Web workloads is not easy. A number of different tech-

niques are used to collect Web workloads, each of which has strengths and weaknesses. The size

and diversity of the Internet makes it impossible to know if the traffic characteristics observed at one

location on the Internet will be applicable in other locations. Furthermore, the Internet is a moving

target. Rapid growth in Web usage occurs both as new users and new network applications appear.

As a consequence, workload characteristics observed at a given point in time may not hold even one

year later.

Network tracing is one approach to measuring the characteristics of Web and other network

traffic. One of the key advantages of network tracing, as a workload collection technique, is the

ability to observe the network behavior of a large number of users without installing a large number

of hardware or software components. Network tracing systems offer the ability to observe, analyze,

and summarize network traffic. These systems often provide visibility down to the level of individual

packets. Tracing systems have proved useful in a wide variety of application domains such as

105

network security, distributed debugging, network operations, and performance analysis. In this

chapter, we present the design and implementation of a tracing system used to collect workloads of

two application-level Internet protocols: the HTTP protocol used to transfer Web content and the

RTSP protocol used to transfer streaming-media content.

6.1.1 Uses of Network Tracing Systems

For network security, tracing systems are an important component of online intrusion detection

systems. They are also used in the response to security incidents; they provide an audit trail of

network activity that can be used to understand the attack mechanism for a system that has been

recently compromised.

For network operations, tracing systems play an important role in capacity planning. Network

managers use them to understand which components of their network are currently overloaded, and

also to analyze the rate of traffic growth and upgrade capacity before performance problems arise.

Network managers also use tracing systems to discover failures such as routing failures or failed

components. Finally, tracing systems provide a method for network operators to implement detailed

and accurate billing and accounting systems.

Tracing systems provide a useful debugging tool for distributed application development. The

ability to observe application interactions at the network level often leads to the discovery of un-

expected communication patterns, unnecessary data transfers, unintended security exposures, and

other irregularities.

Performance analysis is perhaps the most compelling use for network tracing tools. Trac-

ing has been used to study low-level network performance issues (such as packet loss, delay and

jitter[Paxson 97]), network protocol layer interaction problems[Balakrishnan et al. 98], and aggre-

gate behavior. The key advantage of network tracing for performance analysis is the ability to

observe the aggregate traffic from a large number of users.

6.1.2 Contributions

In this chapter, we describe our design, implementation, and deployment experience with a network

tracing system explicitly focused on studying application-level Internet protocols. Our system uses

106

passive network monitoring to observe the Web behavior of a large and diverse group of clients. We

installed it at the University of Washington Internet border, and we used it to observe all Internet

traffic that flows through the border.

The tracing system was in use at the UW Internet border for approximately three years. We

monitored HTTP workloads from the Summer of 1998 through the Spring of 2000, and we moni-

tored RTSP workloads from January of 2000 through the Spring of 2001. During the deployment

period, the HTTP traffic load grew by a factor of three, and the tracing system scaled to keep up

with the load increases with negligible packet loss.

Our system supports high-speed passive network monitoring of multiple network interfaces on

the same machine. We also support asymmetric routing paths – a relatively common property of

Internet traffic flows. Our system performs on-the-fly reconstruction of TCP connections. This trac-

ing system takes an extremely conservative approach to protecting users privacy. Finally, we use a

novel technique to preserve geographic locality for the machines being traced while still maintaining

anonymity.

The remainder of this chapter is organized as follows. We begin with an evaluation of alterna-

tive Web workload collection techniques in Section 6.2. In Section 6.3 we describe the hardware

architecture of our trace collection system. Section 6.4 provides a detailed look at trace collec-

tion software architecture. In Section 6.5 we describe the trace analysis tool-set, and Section 6.6

examines the performance of our tracing system.

6.2 Alternative Workload Collection Approaches

Network tracing is one of many techniques used to study the characteristics of Internet workloads.

Two other commonly used approaches are application-level logging and synthetic traffic generation.

One advantage of the application logging approach is that many applications, including most

Web servers and proxies, provide built-in support for logging a certain amount of detail about the

Web traffic they handle. Enabling logging for these applications is usually just a matter of changing

an item in a server configuration file.

When the source code for Web components is freely available, it is relatively easy to modify

the logging code to collect the desired information. A number of popular Web components fall into

107

this category, such as the Squid proxy cache, the Apache Web server, and recent versions of the

Netscape Web browser.

There is a final advantage of the application logging approach. For certain types of studies, one

has access to information that is relevant to the workload, but is not encoded in the transmitted data,

and may therefore be unavailable to another approach such as network tracing or synthetic traffic

generation. For example, in a trace of HTTP traffic one might want to know which URLs are static

HTML content and which URLs are program-generated HTML content. There is no information

contained in an HTTP Web response that would allow a network tracing program to determine how

to answer this question, yet it would be relatively straightforward to write logging code within a

Web server to record this information.

There are also numerous disadvantages to the application logging approach. When using an off-

the-shelf product, the source code is often unavailable which makes instrumentation difficult. The

default level of detail collected in the logs is often inadequate for performing the necessary analysis.

For example, the access logs generated by a Microsoft Web proxy server include a flag to indicate the

occurrence of certain HTTP headers (namely the “Last-Modified” and “Expires” headers), but those

logs do not include the actual time values for those headers, which prevents one from performing

an analysis of Web cache-consistency strategies using these logs. Another disadvantage is that the

performance overhead of application logging may be prohibitive, especially when the level of detail

required is extensive.

Finally, the most serious problems for the application logging approach relate to deployment.

For production services, the deployment problems arise from the risk of modifying those services.

In general, system administrators are extremely reluctant to make any changes to production ser-

vices that do not improve the performance, correctness, or availability of the service. Modifying

the source code of an application to collect workload information does not directly help any of

those three properties, and furthermore it carries the risk of unintentionally introducing bugs into

previously working software.

Synthetic Web-traffic generation has been used for performance characterization by a number

of previous research efforts [Worrell 94, Wills et al. 99b, Wills et al. 99a, Krishnamurthy et al. 00].

This approach has also become popular in the commercial arena. Keynote systems [Keynote 01]

measures end-to-end Web performance by placing measurement hosts in major metropolitan areas

108

across the world.

The most significant advantage of generating synthetic Web request traffic is the amount of con-

trol that it allows. For instance, it allows a controlled set of sites to be studied, which makes certain

types of comparisons easier. In [Krishnamurthy et al. 00], the authors identified 700 popular Web

sites that supported both HTTP 1.0 and 1.1. They then generated synthetic Web requests to perform

page downloads using four different download policies implemented by their client software, which

allowed them to make a direct comparison between the different download strategies.

Another advantage of synthetic Web requests over both application logging and network tracing

is the potential to use large amounts of computation or storage to perform an experiment. Consider

the case where one wants to study Web document rate of change. To determine when a change

occurs or to determine the extent of changes within a document, one wants to save the entire docu-

ment contents of each document access (or a hash of the document contents). Using the application

logging approach, one would need to modify a proxy cache or Web server to save a copy of each

service response or to calculate a hash value for each service response. This would require a sig-

nificant amount of compute and/or storage resources at the machines providing the service, which

would in turn affect the users of that service. Using a network tracing system, the additional over-

head of saving the document contents or calculating a hash of the document contents could lead to

difficulties during a burst of traffic. Using the approach of synthetic traffic generation, requests may

be generated at a rate that the CPU and storage resources of that system can handle easily.

The final advantage of synthetic request generation is that it permits the analysis of sites using

encryption techniques such as SSL [Freier et al. 96] or IPsec [Kent et al. 98]. Network monitoring

does not permit any visibility of SSL or IPsec traffic. Furthermore, the most common application

logging approach to collecting Web traces is at a proxy cache, and SSL traffic that goes through a

proxy cache cannot be observed and recorded in the proxy logs.

The principal disadvantage of generating synthetic requests is that the results are not weighted

by the frequencies with which real users access the documents in question. This can sometimes

make results difficult to interpret. For instance, [Wills et al. 99b] studied how often Web documents

were uncachable by requesting the top-level home pages from a set of 100 popular Web sites listed

at “http://www.100hot.com/”. They calculated the percentage of uncachable documents in their test

set, but one cannot directly compare that percentage with the percentage of uncachable documents

109

in a trace of real Web users. The results from a real trace will be affected by the actual document

popularity distribution whereas the results from a synthetic study will not.

Another potential disadvantage of generating synthetic requests is the possibility that the syn-

thetic traffic differs in some unexpected way from the real traffic. For example, [Wills et al. 99b]

investigated whether or not document content changes when Web requests to that content contain

different cookies. They generated multiple requests, each of which contained a different assigned

cookie. This strategy assumed that the document content might change without any specific user

action. Many sites that use cookies for customization require additional user actions to actually

customize the content, which their methodology will not do. Synthetic Web requests often use a

custom HTTP client rather than a full Web browser. This approach is dangerous because differences

in the HTTP implementation can also lead to unexpected results.

6.3 Hardware Configuration

Figure 6.1 illustrates the UW network border configuration during the time when the tracing system

was operational. Our tracing system used passive network monitoring to observe all packets that

flowed through the four campus network switches. The two border routers were configured so that

during normal operation, one handled all inbound traffic and the other handled outbound traffic.

Each of the four campus switches was configured to enable port mirroring, and the mirror port was

configured to only support unidirectional traffic. In other words, we avoided any operational risk

to the campus network environment by ensuring that any network traffic generated by our tracing

machine would be discarded. Traffic from the campus subnet routers was load balanced across

the four campus subnet switches. Furthermore, the routing of traffic across these switches was

asymmetric. This meant that the inbound and outbound directions of a single TCP connection often

traversed different network switches.

For the first two years, our traces were collected by a single DEC Alpha workstation with four

100 Mb/s Ethernet interfaces. The CPU of this machine was a 500MHz Alpha 21164, and it con-

tained 384 MB of RAM. The operating system we ran on this machine was Digital UNIX V4.0D.

Our Ethernet network interface cards were built with the DEC PCI 21140 Ethernet chip-set. As the

traffic load grew, we moved to a dual host configuration. For the final year, our HTTP traces were

110

Router Router

SwitchSwitch

Router Router

Switch SwitchCampus Network
Switches

Border Routers

Internet

Router
Campus Subnet
Routers (~30)

….

UW Internal
Subnet

UW Internal
Subnet

….

Trace
Host

UW Internal
Subnet

Figure 6.1: University of Washington network border configuration, including the installation of
our tracing system.

collected by two Alpha workstations. The second workstation used a 500MHz Alpha 21264 CPU,

and it contained 512 MB of RAM. For this configuration, both workstations ran the Compaq Tru64

UNIX V4.0F operating system. Each machine had two Ethernet interfaces connected to the campus

switches, and a third Ethernet interface was used for inter-machine communication.

6.4 Trace Collection Software

Figure 6.2 provides a high-level view of the network trace collection software architecture. The

left-most box shows an expanded view of the primary kernel components that the network tracer

uses, and the right-most box shows an expanded view of the primary modules within the user-level

network tracing application. One design principle we use to guide our development strategy is to

avoid making kernel modifications as much as possible. By working mostly at user-level, we reduce

development time by avoiding the typical debugging problems that arise from working inside the

kernel. We pay a performance penalty by implementing most of the tracing functionality at user-

level because the filtration process to eliminate uninteresting packets occurs at user-level.

The user-level network tracing application, httpmon, uses an event-driven concurrency model.

We choose this structure for a number of reasons. First, we avoid the locking overhead and race

111

Device Driver

TCP/IP Stack Packet Filter

Kernel

User

Kernel

User

Compression & Logging

Application-Level Protocol
Modules (HTTP, RTSP)

Packet Capture: Buffer
Management, Scheduling

TCP Reconstruction

Figure 6.2: Software architecture of the network trace collection system.

conditions that are often a problem when implementing multi-threaded applications. Second, we

use the gdb debugger and gcc compiler suite. On the Digital UNIX platform, gdb is unable to do

post-mortem analysis when applications are linked with the Digital UNIX POSIX threads library.

Also, gdb support for live debugging of multi-threaded applications is unreliable on the Digital

UNIX platform. Lastly, we want explicit control over scheduling within the httpmon process which

would not be available to us using POSIX threads. Due to our event-driven concurrency model, we

must ensure that all system I/O operations involve non-blocking system calls.

Because the tracing system was deployed over a long period of time, we went through a number

of configurations, each of which placed slightly different demands on the software. Therefore, in

the following sections when describing the software implementation we will refer to three specific

configurations:

• Original HTTP configuration: In the original HTTP configuration, we used a single Alpha

21164 workstation to monitor all four network switches on the same machine. We collected

information about all incoming and outgoing HTTP transfers.

• Dual-host HTTP configuration: For the dual-host HTTP configuration, we used two Alpha

workstations (one with an Alpha 21164 CPU and the other with the Alpha 21264 CPU) to

collect our HTTP traces. Each machine had two network interfaces used for packet mon-

112

itoring and a third network interface used for inter-machine communication. The primary

reason for connecting the two machines was to synchronize the clocks so that the timing in-

formation in the trace would be useful. We used NTP to synchronize the clocks of the two

workstations [Mills 91].

• RTSP configuration: For the RTSP configuration, we used the Alpha 21264 workstation to

collect our RTSP traces. The software was configured only to monitor RTSP and not HTTP.

For reasons discussed below, our software did not support monitoring RTSP with a dual-host

configuration.

In the sections that follow, we provide an overview of each major component of the network

tracing system. We begin with an overview of our design to protect the privacy of individuals using

the campus network because these privacy constraints have a significant impact on the overall design

of the tracing system.

6.4.1 Privacy Protection

Our system goes to great lengths to protect the privacy of students, faculty, and staff using the UW

campus networks. Our primary goal is to ensure that the traces we collect cannot be used to identify

the behavior of individual internal users. To accomplish this goal, we enforce three constraints on

our system design. First, we ensure that all potentially sensitive information collected in our trace

is anonymized. This means that we do not know which client accessed a Web page, which server

was accessed, or even the name of the URL that was accessed. Second, we erase a few of the low-

order bits for all internal client addresses in our trace before the anonymization step occurs. Finally,

we ensure that no raw data ever reaches disk storage in an un-anonymized form. We protect the

monitoring host by disconnecting it from all networks other than the passive one-way connections

to the switches.

We use a keyed version of the MD5 message digest algorithm to anonymize strings such as the

name of the URL, the server name, and the referrer header [Rivest 92]. We use a different technique

to anonymize all client and server IP addresses in our trace. Previous tracing studies anonymized

the entire IP address, so that two clients from the same local network would have their addresses

113

mapped to two random addresses that have no detectable relation to each other once anonymized. In

contrast, our goal is to retain some locality information in the anonymized addresses. We would like

to be able to associate addresses from the same local network topology (e.g. campus department)

without compromising the anonymization scheme.

IP Address Anonymization

We use slightly different approaches for client and server IP addresses. For clients, we partition the

IP address into two parts: a network part and a host part, and we anonymize each part separately.

Hosts on the same network will therefore have the same anonymized network part, but because that

network part is anonymized it will not be known exactly which network the host is on. Furthermore,

to absolutely prevent the possibility that a client address can be matched up against its anonymized

version, not only will the host part of the address be anonymized, but the low-order bits of the

host part will be erased before the anonymization step. With this anonymization scheme, even

in the unlikely event that the key to the hash function is compromised (e.g. discovered, reverse

engineered, or involuntarily revealed by a court order), no client address from a machine on campus

can be matched one-to-one with absolute certainty to an anonymized client address in the trace. To

determine the boundary between the network and host parts of the client address, we precompute a

table that stores this information for all internal UW networks.

For server addresses, we know nothing about the breakdown of IP addresses into network and

host parts, so instead we anonymize each octet in a server IP address separately. Classless routing

for the Internet prevents us from making too many assumptions about addresses that match using

some number of prefix bytes, but we can still make some useful assumptions. For our purposes, two

servers are near to each other if they share most or all of the Internet path between them and UW.

Given this definition, we assume that two servers are close to each other if their first three octets

match. Even if more than 24 bits are used for the network address of a server, it is very likely that

servers on two different subnets of such a network will share a common path through the Internet

from UW.

114

Key and Data Management

We type the key for the MD5 hash function into the console of the tracing system by hand at the start

of each experiment. We generate the key with the PGP key generator which is seeded by sampling

keystroke arrival times [PGP 01]. We record this key on paper and not on any non-volatile electronic

storage medium. After a tracing experiment is finished, we erase the key from system memory.

To further ensure that our tracing system does not compromise the privacy of the campus net-

work users, we impose the constraint that no raw packet data should ever reach stable storage.

This constraint has a significant effect on the overall design of the network tracing application. In

particular, it precludes using the approach taken by the BLT system [Feldmann 00], where the high-

priority task is simply copying packets from the network interface to a raid storage array with an

intermediate step of IP address anonymization. In our system, packet analysis, TCP connection

reconstruction, data anonymization, and data compression are done in RAM as an online compu-

tation, and the only data written to non-volatile storage is HTTP header information that has been

processed and anonymized.

To debug the tracing system, we need to record some raw trace data to reproduce errors generated

by the live packet data and to verify that our fixes are correct. Because of the constraint that no raw

packet data should be saved on persistent non-volatile storage, we use a memory file system to store

the error logs. This has the disadvantage that if the system crashes and reboots the error logs are

permanently lost. We also isolate the information in our error logs so that when a sensitive field

such as a URL is written to the log, we ensure that no other information (such as an IP address or

another header field) is logged about that same connection.

6.4.2 Kernel Modifications

As mentioned earlier, our goal was to make as few kernel modifications as possible. For the orig-

inal HTTP configuration, we made two minor kernel modifications. Our first modification was to

increase the size of the receive descriptor ring in the Ethernet device driver. This driver maintains

a ring of memory descriptors used by the Ethernet interface to place incoming packets into system

memory. Each descriptor describes a segment of contiguous physical memory, and each memory

segment is used as the target of a DMA transfer from the network interface memory to system mem-

115

ory. We increased the number of receive ring descriptors from 16 for each network interface to 256

per interface. This allows the device to handle bursts of packets when the system is too busy to

process a receive interrupt generated by a particular network interface in a timely manner.

Our second modification was to change two buffer management related constants in the kernel

packet-filter module. The first constant controls the maximum number of packets that can be queued

for a single packet-filter, and the second controls the maximum total number of packets that can be

queued across all the packet-filters. The goal of increasing these values is to handle the delay

between reads by the monitoring process.

For the RTSP configuration, we used a single machine to collect our traces. We chose to use

a single machine for monitoring RTSP because the RTSP protocol module needs information from

both incoming and outgoing traffic, and with a dual host configuration it is possible that the incoming

traffic is monitored by a different machine than the outgoing traffic. Rather than implementing

support for fine-grained sharing of information across the two monitoring hosts, we chose instead

to modify the kernel to eliminate all HTTP port 80 traffic at the device driver level. This reduced

the load to a point where a single machine could monitor RTSP traffic on all four network interfaces

without dropping packets. To support this optional HTTP filtering, we added a device ioctl to the

driver so that the monitoring application can enable the filter at startup and disable the filter upon

exiting.

6.4.3 Packet Capture: Buffer Management and Scheduling

The packet capture module of our user-level network tracing application is the layer that extracts

packets from the kernel, buffers these packets, and schedules the packet processing tasks. The inter-

face to this module is based on the packet capture library, libpcap, which is the library component

of the popular tcpdump network tracing tool [Tcpdump 01]. The implementation of this module

diverges from the original libpcap in a number of ways. Because the original libpcap implementa-

tion was designed for monitoring a single network interface, its buffer management and scheduling

strategies are inadequate when monitoring multiple network interfaces simultaneously. For instance,

the pcap read routine provides a buffer to the kernel packet-filter and then blocks until the packet-

filter has filled the buffer. When monitoring multiple network interfaces, this blocking model can

116

cause packet loss on the other interfaces. Furthermore, the libpcap scheduling model requires that

an application process all packets placed into the buffer before it can call the read routine again to

extract more packets from the kernel. This can also lead to long delays between read operations

which in turn causes packet loss.

In our packet capture module, we allocate a large (4 MB) ring buffer for every network inter-

face being monitored. All read operations from the kernel packet-filter into the ring buffers are

non-blocking, and we use the select system call to detect when new packets have arrived at a given

interface. When the incoming packet rate is high enough that all interfaces have newly arrived pack-

ets, we perform read operations on each network interface in a round-robin manner. We structure

the packet capture module so that extracting packets from the kernel has a higher priority than pro-

cessing packets that are already in the ring buffers. During normal operation we process packets

from the ring buffers in a round-robin manner. When the amount of data stored in one of the ring

buffers exceeds a threshold (currently 1/6th of the total buffer size), we raise the priority of pro-

cessing packets from that ring buffer. The key to supporting high speed packet monitoring across

multiple network interfaces without packet loss is to ensure that the delay between successive read

operations to the same kernel packet-filter never gets too large. Section 6.6 describes the amount of

packet loss we observed when collecting traces at the University of Washington.

6.4.4 TCP Connection Reconstruction

When the packet capture module schedules a packet to be processed, the first step is performed

by the TCP connection reconstruction module. This module identifies all packets that contain TCP

segments and then reconstructs the TCP connection that those segments belong to. Next, it classifies

each TCP connection using a protocol-specific predicate. For HTTP, this predicate examines the

contents of the first data segment in each connection to decide whether or not the connection is an

HTTP connection. This technique allows us to see all HTTP traffic and not just the HTTP traffic that

happens to use port 80. Once a connection has been classified as HTTP, we monitor further segments

along that connection so that we can locate all the HTTP headers when persistent connections are

used. For all TCP connections that we determine are not HTTP, the segments that follow are simply

discarded.

117

In order to reconstruct all TCP connections that flow through our tracing host, this module main-

tains a data structure called the tcp state table where information is stored about the currently active

TCP connections. In many respects, the tcp state table resembles the table of TCP protocol control

blocks that is maintained by the traditional BSD implementation of the TCP/IP protocol stack. The

tcp state table is implemented as a hash table whose key contains the source address, the source port

number, the destination addresses, and the destination port number. Due to the asymmetric routing

architecture at UW, we actually analyze the inbound and outbound halves of each TCP connection

independently. Therefore, entries in the tcp state table correspond to unidirectional flows and each

TCP connection will contribute two entries into the table.

One of the challenges of properly reconstructing TCP connections is dealing with out-of-order

and retransmitted TCP segments. We want to ensure that retransmissions do not lead to duplicate en-

tries in our trace log of HTTP requests and responses. If a TCP segment contains an HTTP request,

and if that segment is retransmitted due to a packet loss in the portion of the network between the

tracing machine and the destination, then our TCP layer should detect that retransmission and ensure

that the HTTP analysis module only processes that request once. Due to the large number of active

TCP connections and the relatively limited amount of memory on our tracing machines, performing

TCP segment reassembly in the traditional manner is not possible. A traditional TCP implementa-

tion performs reassembly by storing all out-of-order packets while waiting for the preceding packets

to arrive. Instead, our tracing software handles this problem by maintaining a sequence-map data

structure that records for every connection a map of all contiguous ranges of the TCP sequence

space that have been processed by the HTTP analysis module.

Garbage Collection

The final major component of the TCP reconstruction layer is the garbage collector. Entries are

added to the tcp state table each time a TCP SYN segment is processed. The garbage collector

component is responsible for deleting entries from the tcp state table. Deciding when to delete en-

tries from this table is somewhat more complex than adding entries to the table. When the TCP

reconstruction module sees a FIN or a RST segment, we do not immediately delete the correspond-

ing entry from the tcp state table for the following reason. Packets may arrive at the trace machine

118

out-of-order and the end-host may even retransmit a FIN segment. When a machine terminates a

TCP connection using a RST segment, the opposite direction of that TCP connection typically does

not see any explicit traffic that indicates the connection is terminated. Because we are monitor-

ing each direction of a TCP connection independently, this means we need another mechanism to

garbage collect these entries from the table.

Our garbage collector implements the following policy. Every four seconds, the garbage collec-

tor runs and traverses a fixed number of buckets in the hash table, although each bucket will have a

variable number of entries depending on how full the table is. This incremental strategy ensures that

garbage collector does not run for too long at any one time, which would eventually lead to packet

loss. For each connection where we see a FIN or a RST segment and the connection is idle for at

least three minutes, we delete that entry from the table. For each connection where we see no FIN

or RST segment, we require that the connection be idle for at least fifteen minutes before we delete

that entry from the table. One consequence of this policy is that if any persistent connections have

very long idle periods, then these connections are garbage collected and any requests or responses

that follow the idle period are not included in our trace.

6.4.5 Application-Level Protocol Modules

The application-level protocol modules process data passed in from the TCP reconstruction layer

for those TCP connections that are classified as the correct type. In our system, we implement two

application-level protocol modules, one for HTTP and another for RTSP. Both the HTTP and RTSP

modules perform similar tasks even though the details differ. Both modules perform the task of

identifying and then parsing the protocol headers. Because both protocols are based on the MIME

message format, the parsing tasks for both protocols are very similar. Once the headers are parsed,

we extract the relevant fields to be saved to the trace log, and we then anonymize any of these

fields that contain sensitive information. The extracted fields are converted to a compact binary

representation, and this data structure is then passed to the logging and compression module. To

demonstrate the kind of information stored in these data structures, Figure 6.3 shows a commented

version of the data structure used to record information about an HTTP response.

The task of parsing is made significantly more complex by the wide variety of HTTP implemen-

119

� �
s t r u c t h t t p r e s p o n s e e n t r y {

i n t 6 4 c o n n i d ; / / u n i q u e i d e n t i f i e r f o r each TCP c o n n e c t i o n
s t r u c t t i m e v a l s y n t i m e ; / / t i m e when t h e i n i t i a l SYN segment a r r i v e d
s t r u c t t i m e v a l h d r t i m e ; / / t i m e when t h i s header segment a r r i v e d
s t r u c t t i m e v a l l d t i m e ; / / t i m e when t h e l a s t da ta segment a r r i v e d

/ / (f o r p e r s i s t e n t c o n n e c t i o n s)
unsigned shor t h d r l e n ; / / header l e n g t h
s e q t h d r s e q ; / / s t a r t i n g s e q u e n c e number o f t h i s header
i n t e r f a c e t i n t e r f a c e ; / / ne twork i n t e r f a c e t h i s header a r r i v e d on
n o d e a d d r s r c a d d r ; / / s o u r c e IP addres s , por t , and o r g a n i z a t i o n−i d
n o d e a d d r d e s t a d d r ; / / d e s t IP addres s , por t , and o r g a n i z a t i o n−i d
unsigned shor t s t a t u s ; / / HTTP r e s p o n s e code
s t r u c t h t t p v e r s i o n h t t p v e r s i o n ; / / HTTP v e r s i o n number
i n t 6 4 s i z e ; / / Conten t−Leng th header
t i m e t d a t e ; / / Date header
c o n t e n t t y p e t t y p e ; / / Conten t−Type header
c o n t e n t e n c o d i n g t e n c o d i n g ; / / Conten t−Encoding header
char ∗ s e r v e r a g e n t ; / / Se rve r−Agent header
t i m e t l a s t m o d i f i e d ; / / Las t−M o d i f i e d header
t i m e t e x p i r e s ; / / E x p i r e s header
h a s h v a l t e t a g ; / / Etag header
s t r u c t c a c h e i n f o c a c h e c o n t r o l ; / / Cache−c o n t r o l header
unsigned shor t f l a g s ; / / F lags t o i n d i c a t e o t h e r c o n d i t i o n s

/ / i n t h e HTTP h e a d e r s
} ;

� �

Figure 6.3: The data structure used to record information about an HTTP response.

tations that don’t quite follow the rules. For example, the protocol specification is very clear as to

the exact character sequence that specifies the boundary between HTTP headers and the message

body. In practice, our tracing software would fail to detected the boundary approximately 25% of

the time if it only used the exact character sequence specified by the RFC. Another example is the

misspelling of important header names. Our parser accepts nine different spelling variants of the

“Content-Length” header, which we observed often enough to code into our parser. RTSP suffers

from this problem to a lesser extent than HTTP because there are not as many diverse implementa-

tions.

The RTSP parsing is somewhat more complex than the HTTP code because of a wider variety

of message types and because of the fact that the protocol is stateful. Our RTSP parsing module

maintains a table that models the state machine for each client session. Furthermore, it deals with

control messages that cross TCP segment boundaries, and it deals with extracting the control mes-

sages from interleaved connections. Interleaved connections are those where the control traffic and

the streaming-media data traffic are sent over the same TCP connection. Finally, there is additional

120

complexity in the RTSP parser because it has to interact with the lower layers of the tracing software

to monitor the out-of-band traffic associated with an RTSP control connection. The parser extracts

UDP port numbers from the RTSP control connection, and then the lower layer packet processing

code counts the number of bytes transmitted on those UDP channels.

6.4.6 Logging and Compression

The logging and compression layer takes input records passed to it from the application-layer pro-

tocol modules. We append these records to a 128 KB buffer, and once that buffer fills we com-

press that chunk of data and write the compressed chunk to disk. We use the LZO library for data

compression because the LZO library is optimized to provide fast compression and decompres-

sion [Oberhumer 02]. We use the Digital Unix asynchronous I/O interfaces to ensure that write

operations do not block in the kernel. Rather that writing the trace as one very large file, we write

the trace in 40 MB segments. This makes the trace easier to manage after it has been collected.

The logging layer hides this complexity from the rest of the tracing system as well as from the trace

analysis tools.

6.4.7 Denial-of-Service Attacks

Shortly after our initial deployment of the tracing system, we discovered that our system was vulner-

able to TCP SYN attacks, a relatively common form of denial-of-service attack on the UW network.

Whenever a SYN attack traversed the UW campus network border, it caused the tcp state table

maintained by our tracing software to use up a very large amount of memory. After a short period of

time, the system ran out of memory at which point the tracing software ceased to function. In order

to collect the traces, we had to develop heuristics to detect and eliminate the SYN segments in the

attack, while not losing any of the “real” SYN segments.

To detect the occurrence of an attack, on a two-second periodic interval we calculate the ratio of

the number of SYN packets that arrive during the most recent interval to the number of connections

that receive their first data segment during that interval. When that ratio exceeds four to one, and

when the absolute number of SYN segments that arrive during the interval exceeds 2,000, then

we initiate the code that attempts to determine the target of the attack. We observe that all of the

121

SYN attacks that flow through our tracing system have a wide variety of spoofed IP addresses as

the source address of the SYN segment, but the target or destination address of the attack is just a

single IP address. The code that determines the attack target samples a set of source and destination

address pairs from recent SYN segments looking for a common target IP address. When it finds

such an address, it records that address and then enables the SYN filtering code.

Our initial approach to filtering was simply to eliminate the bad SYN packets in the TCP recon-

struction layer. We discovered that SYN attacks caused an additional problem for our tracing code

beyond just wasting lots of memory by filling up the tcp state table: the overall rate of incoming

packets during a SYN attack greatly exceeded the rate of incoming packets at any other time during

trace collection. The rate was so high that the user-level ring buffers filled up and the system began

to drop packets. To fix this problem, we built a fast path inside the packet capture module that elim-

inated the bogus SYN packets as the first step in packet processing. This fix worked well enough

to eliminate the problem, though if it hadn’t been effective we could have gone one step further and

prevented the packets from ever being delivered to user-level by installing a new kernel packet-filter

that eliminated all packets directed to the attacked IP address.

The final aspect of our SYN attack handling involves deciding when the attack is over and when

to clean up the filters. We do this by continuing to look at the ratio of SYN segments to real TCP

connections, and we wait for a full two minutes after the attack appears to be over before cleaning

up the filters. We implement this waiting period because we often observe short periods during a

SYN attack where the rate goes to zero and then starts back up again.

6.5 Trace Analysis Software

The trace analysis software is structured as support routines for a set of statistics collection modules

(SCM). The SCMs can be run either separately or in parallel to analyze properties of the trace.

Examples of SCMs include a document cachability analyzer, a response bandwidth analyzer, and a

rate of change analyzer. Overall we implemented more than 90 different SCMs. The entire trace

analysis system is approximately 36,000 lines of code. In this section, we describe the support

routines that ease the development task of building new SCMs and that improve the performance of

SCM processing.

122

The lowest level support routines implement log decompression and merging of the log segment

files. The output of those steps is a sequence of individual records from the log files. We take

that sequence of records and then match up requests and responses. The matching process for

an HTTP persistent connection creates a data structure that consists of one array storing all the

requests records, another array storing all the response records, and two close records that store the

termination information for each half of the TCP connection. From this data structure, an additional

step matches requests and responses within the persistent connection and creates an http xaction data

structure. An http xaction is a single matched request/response pair with the request and response

close records.

The matching code consumes a significant amount of CPU and memory resources when pro-

cessing a large trace. One consequence of this is that the memory used for matching reduces the

maximum amount of memory that can be used by one or more SCMs. A number of the SCMs we

implemented are very memory intensive (e.g., an ideal cache simulator with no replacement). To

compensate for this problem, we implemented a trace sorting pre-processor. The trace sorter uses

the matching code described above, and in addition it sorts the resulting http xaction records on any

of the time fields in either the request or the response. The output of the trace sorter is a new set of

log segments that contain already matched and sorted records. This sorted log can now be used to

run the SCMs, and the memory and CPU overhead of the matching code is eliminated. In addition

to the trace sorting, we implemented another pre-processing step we call splitting. The motivation

for splitting is that some SCMs consume more memory than the 1 GB of RAM that our analysis

machine contains. We observe that for all of memory intensive SCMs that we created, the memory

overhead scales with the number of objects in the trace. Therefore, the splitting code divides up the

object space into N evenly sized chunks. Each SCM can now be run in N passes where each pass

runs over a smaller split trace. We run a final result merge step after all the passes are complete that

reads in the intermediate results from each pass, merges the data, and writes out the final results.

Note that the result merging code is SCM specific.

The primary trace analysis program contains a command-line parser and a set of three very large

switch statements. The command-line parser is used to determine the location of the trace files, any

constraints that the user places on which portion of the trace to analyze, and the names of one or

more SCMs that the user wants to run. The three switch statements are use to invoke routines within

123

those SCMs that are specified on the command-line. The first switch statement is used to call out to

the SCM initialization routines. The second switch statement is a component of the main loop that

takes every matched http xaction and calls the processing routines for each selected SCM. The final

switch statement calls the result generation routine within every enabled SCM.

Another aspect of the analysis infrastructure is that we provide a set of support routines used by

many of the SCMs to collect and analyze information. We provide a set of histogram implemen-

tations that support counting occurrences of integers, addresses, arbitrary strings, and time-series

data. Our histogram implementations provide result generation routines that allow the output of his-

tograms to be generated in either standard form or in the form of a cumulative distribution function.

For the integer histograms, the creator controls the granularity of the histogram by specifying the

bucket size as well as the minimum and maximum values. We also provide the standard statisti-

cal routines that calculate the mean and standard-deviation for a data set. We include support for

reporting the median value of a data set using the integer histograms.

6.6 Performance

In this section, we characterize the performance of our network tracing system. We focus exclusively

on the performance of HTTP monitoring because the RTSP traffic rates are not large enough to cause

significant performance problems. We begin by characterizing the traffic load on the system during

the highest-load one-week HTTP trace that we collected, and then we characterize the performance

of the httpmon system during trace collection.

The one-week HTTP trace with the highest traffic load was collected from May 16th, 2000

through May 23rd, 2000. We used the dual-host HTTP configuration for trace collection during that

time period. Figures 6.4, 6.5, and 6.6 characterize the network load on the tracing system during that

time period. Figure 6.4 shows the packet arrival rate as measured by the network tracing software.

Figure 6.5 shows network load in terms of bandwidth rather than packets per second. Figure 6.6

shows the number of entries in the TCP state table during the trace collection period. Each open

TCP connection contributes two entries to the TCP state table, one for each direction of the TCP

connection. The granularity of measurement by the tracing software was every two seconds, and to

improve readability of the graphs we performed a post-processing step on the data to show the data

124

16
:0

0

20
:0

0

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

Time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

P
ac

ke
ts

 p
er

 s
ec

o
n

d

Figure 6.4: Total number of packets per second over time.

in per second granularity. The peak arrival rate during the entire trace period was just over 55,000

packets per second. The peak bandwidth during the trace period was 21.9 MBytes per second (or

175 MBits per second). This figure shows a lengthy burst of packet load lasting more than four

hours during the Sunday evening time period, with a sharp start and end to the burst. This burst

of load is a denial of service SYN attack and most of the packets are arriving on a single network

interface. Because the SYN packets are very small, this burst of load is not easily visible in the

bandwidth graph.

Table 6.1 shows the overhead of different components of the system during trace processing,

as measured by the DCPI continuous profiling tool [Anderson et al. 97]. DCPI proved to be very

useful during the initial development stages of httpmon because in many cases our intuition was

wrong about which routines needed to be optimized in order to avoid dropping packets. DCPI

allowed us to quickly focus on optimizing those routines which were actually consuming a large

portion of the CPU. We collected the measurements in this table on Sunday June 11th 2000 during

a three hour mid-afternoon period, rather than during the collection of a full one-week trace.

The left-most column of Table 6.1 shows the percentage of time spent in each image while

collecting a trace. DCPI defines an image to be an executable, a shared library, or the kernel.

Because DCPI groups time spent in the idle thread along with the rest of the kernel activity, we

chose to separate out time spent in the idle thread for clarity. This portion of the table shows that

125

16
:0

0

20
:0

0

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

Time

0

5

10

15

20

B
an

d
w

id
th

 (
M

B
yt

es
/s

ec
)

Figure 6.5: Total bandwidth over time (in MBytes/sec).

16
:0

0

20
:0

0

W
ed

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
hu

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

F
ri

00
:0

0

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
at

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

S
un

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

M
on

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

20
:0

0

T
ue

 0
0:

00

04
:0

0

08
:0

0

12
:0

0

16
:0

0

Time

0

50000

100000

150000

200000

250000

300000

350000

400000

T
C

P
 S

ta
te

 T
ab

le
 s

iz
e

Figure 6.6: Size of the TCP state table over time. Because each direction of a TCP connection is
analyzed separately, each open TCP connection contributes two entries to the table.

126

Table 6.1: DCPI Cycle Count Measurements.

Image %
of Cycles

/vmunix 61.08%
idle thread 23.69%
httpmon 11.37%
libc.so 3.41%
libm.so 0.33%
dcpid 0.12%

/vmunix %
Top 10 of Cycles

bcopy 12.37%
gh zero memory 12.16%
vm page tester 11.41%
read io port 5.35%
Pfilt read 3.65%
Pfilt select 2.97%
spec select 2.95%
free 2.90%
malloc 2.69%
XentInt 2.53%

httpmon %
Top 10 of Cycles

pcap multi read loop 14.42%
0x120015a78 9.51%
process one packet 7.64%
0x1200153a0 6.01%
0x120015638 5.41%
handle ip 5.09%
0x120019d78 4.35%
update state 4.04%
my strnstr 3.16%
packet handler 3.10%

more than 60% of the CPU time during trace collection is spent in the kernel. Approximately 15%

of the CPU cycles are spent in the user-level httpmon application and the shared libraries that it uses.

The middle column of Table 6.1 shows the percentage of time consumed by the ten most fre-

quently used subroutines in the kernel. Here we see that much of the kernel overhead is due to

initialization and copying of memory. One reason for the amount of data copying in the kernel is

that the Ethernet device driver we are using performs an extra copy of every received packet so that

the TCP/IP headers are aligned on a longword boundary. This is necessary because the DMA en-

gine on these cards can only transfer to a longword-aligned target address. The size of the Ethernet

header is 14 bytes so if the beginning of the packet is longword-aligned then the beginning of the

TCP/IP header cannot be longword-aligned.

The right-most column of Table 6.1 shows the percentage of time consumed by the ten most

frequently used subroutines that are part of the httpmon process. From this data we see that most

of the overhead within the httpmon process comes from the packet capture and TCP reconstruction

modules. The subroutine named my strnstr is the only one of the top ten routines that is a component

of the HTTP analysis module. The routine with the largest CPU overhead, pcap multi read loop,

is the main loop of the packet capture module that reads data from the kernel packet-filters and

schedules the packet processing.

In addition to the DCPI measurements, we also directly instrument the httpmon application

127

using calls to the Alpha CPU process cycle counter. We use this technique to measure the latency

of the per-packet processing overhead by excluding the actual parsing and logging of those packets

that contain HTTP headers, and then separately measuring the latency of parsing and logging for

those packets that contain HTTP headers. For the one-week trace collected in May of 2000, we

measured an average per-packet processing overhead of 4,200 cycles-per-packet, and an average

HTTP parsing and logging overhead of 57,000 cycles-per-request or -response. Given the 500MHz

clock of our tracing machine, these numbers correspond to 8.4 µs and 114 µs respectively.

During trace collection, we keep track of the amount of packet loss that occurs and record

that information in our performance log. The Digital UNIX kernel records packet loss at both

the device-driver level and at the kernel packet-filter level. We use the ENTSTAMP feature of the

Digital UNIX packet-filter to extract this information from the kernel, and every two seconds we

record an entry in our performance logs that reports packet reception and loss statistics on a per-

interface basis. An example line would look like: interface 0, pkts rcvd 8995, pkts

dropped 0, if overflow 0, qsize 0. During the 1999 HTTP trace used in Chapters 3

and 4, we recorded a total of 49,115 dropped packets out of 6.4 billion packets received during the

one-week trace, and we recorded a total of 88 interface overflows. Thus the overall packet loss

rate for this trace was .0007%. Furthermore, these losses were not evenly distributed across the

entire trace period. These losses occurred during the afternoon of Tuesday May 11th 1999 during a

denial-of-service attack. During the May 2000 HTTP trace, we recorded zero dropped packets and

a single interface overflow that occurred during the first two seconds of trace collection due to the

structure of the initialization code. In addition to any packet loss that occurs at the tracing machine

which we can detect, there is the possibility that the network switches performing the port mirroring

may be dropping packets. We have no direct way of measuring any packet loss that occurs at the

switches, but we would still like to have some assurance that we are not missing a significant portion

of the traffic. To solve this problem, we generate synthetic Web traffic on a periodic basis from an

internal UW client machine. We then detect those Web requests generated by our internal UW

machine and count what percentage of those requests are seen by the tracing system. In all these

experiments, 100% of the synthetically generated traffic was detected by our tracing system. We did

not perform any of these experiments during the time period when an official one-week HTTP trace

was collected.

128

We conclude our performance discussion with a brief speculative analysis on the scalability of

our tracing system. During the time period from the Summer of 1998 when we began collecting

HTTP traces to May of 2000, the load in terms of HTTP requests generated by the University of

Washington client population grew by a factor of three. Using a combination of performance tuning

the tracing software and upgrading the hardware from a single-machine configuration to a dual-

machine configuration, our tracing system scaled to handle the traffic increase. In order to handle

further load increases, one could continue to add tracing machines until there is a single tracing

host per network switch. If the load scales to a point where a single machine cannot handle the

traffic generated by the monitoring port of a single switch, we then need to modify our architecture.

Modern Cisco Ethernet switches have the capability of supporting multiple SPAN ports on a single

switch [Cisco Systems 02], so this approach could be used to attach more than one tracing host per

switch. Another possibility is to use a front-end machine that sits in between the switch and a set of

tracing machines. The front-end machine could be used to divide up the incoming traffic based on IP

address ranges for the source addresses of incoming packets, and then forward traffic from specific

address ranges to the same monitoring machine. This architecture should allow a relatively large

number of back-end tracing machines to share the monitoring load from a single network switch.

6.7 Summary

In this chapter we presented a passive network monitoring system used to study the traffic charac-

teristics of application-level Internet protocols. Our system was deployed at the Internet border of

the University of Washington for almost three years, and it provided a low-overhead mechanism for

observing the Web behavior of a large client population.

We provided a detailed look at the engineering details involved in building a high-speed packet

monitoring system with the following properties: our system supports monitoring multiple network

interfaces on the same machine simultaneously; our system supports asymmetric routing; it uses a

very conservative approach to maintain privacy for network users, including the constraint that no

raw packet data should ever be stored directly on disk; and our system performs extensive on-the-fly

packet processing including TCP connection reconstruction and application-level protocol parsing

as a consequence of our privacy design constraints.

129

We described a methodology for detecting and filtering bogus SYN packets from TCP SYN

denial-of-service attacks that go through our tracing system. We presented the high-level archi-

tecture of our trace analysis tools, including our methods for supporting analyses such as cache

simulators whose memory requirements when processing a large trace exceed the capacity of the

analysis machine.

We characterized the performance of our tracing system including the traffic load, the percentage

of time spent in different tasks, and the packet loss characteristics. Our tracing system handled peak

data rates of up to 175 Mbits/second and up to 55,000 packets per second. During the deployment

period, we used a combination of software performance tuning and hardware upgrades to handle the

increase in traffic load.

130

Chapter 7

Conclusions

In this dissertation, we present the design and implementation of a network trace collection and

analysis system for studying Internet application workloads. We demonstrate the effectiveness of

this system by performing a set of three Internet traffic studies. The common theme across these

studies is their focus on sharing. The amount of sharing in Web workloads plays an important role

in many techniques used to improve the performance of Internet content delivery, such as proxy

caching and multicast delivery. For example, the amount of sharing that occurs among a group of

clients places an upper bound on the hit rate that a proxy cache serving those clients can achieve. The

following sections summarize the findings of each of the three workload studies. We then summarize

the design of the tracing system and conclude with a discussion of future research directions.

7.1 Organization-Based Sharing and Caching

The first workload study investigates the sharing and caching characteristics of Web documents from

the perspective of organizations. An organizational analysis of sharing is important because Web

proxy caches are typically deployed on an organizational basis. The principal goal of this study is

to evaluate document sharing patterns on the Web, both within an organization and across multiple

organizations. A secondary goal of this study is to understand the rate of access to uncachable

documents from within an organization.

Little is known about document sharing patterns across multiple organizations, due to the dif-

ficulty of collecting simultaneous Web traces of multiple organizations. To address this problem,

we use University of Washington internal organizations to model organizations connecting to the

Internet. We identify 170 internal organizations within the University of Washington, and we clas-

sify each client in our trace as member of one of these organizations. Our trace collection sys-

tem preserves this organizational membership information without compromising the privacy and

131

anonymity of clients using the UW network.

We find that when Web objects are simultaneously shared locally by an organization and shared

globally with other organizations, they are more likely to be requested by an organization mem-

ber than objects that are only shared locally or only shared globally. This suggests that the most-

popular objects within an organization are also universally popular. When clients are members of

the same organization, we also find there is a measurable increase in the amount of sharing when

compared with clients that are members of different organizations. However, this increase is not

large enough to have a significant impact on cache performance. When we examine the rate of

access to uncachable documents, we find that the responses to 40% of all requests in our workload

are uncachable – a rate that is noticeably higher than reported in previous studies.

7.2 Cooperative Caching

Our second study evaluates the performance of cooperative Web proxy caching by focusing on the

effectiveness of cooperation over a wide range of client population sizes. One factor that limits the

hit rate of a Web proxy cache is the total size of the client population managed by that cache. One

technique for increasing the total size of the client population is to take multiple separate proxy

caches and have them cooperate with each other. Increasing the client population size offers new

opportunities for sharing, and therefore offers the potential to increase cache hit rates. Whether

cooperative proxy caching is a useful architecture for improving performance depends on a number

of factors. These factors include the sharing patterns of documents across organizations and the

scale at which cooperation is undertaken.

We explore the potentials and limits of cooperative proxy caching using trace-based analysis. As

with the previous study, we identify each client in our University of Washington trace as a member

of one of 170 internal UW organizations. This provides us with the equivalent of 170 simultaneously

collected traces of diverse and independent small organizations. We use these traces to measure the

potential benefits of cooperation among organization-based proxies. In addition to our University

of Washington trace, we collect a trace of proxy logs from the Microsoft corporation campus Web

proxy caches during the same time period as we collect our UW network trace. We combine the

Microsoft and UW traces to evaluate the benefit of cooperation between large organizations, each

132

with tens of thousands of clients.

Our results show that cooperative caching works well among collections of small organizations.

But cooperative caching is not required for user populations of this size. If it is administratively

and politically feasible, a single proxy cache can usually provide the same benefits with fewer

resources and less overhead. We also show that cooperative caching is unlikely to provide significant

benefits when combining large organizations or populations. Our experimental results indicate that

the additional benefit of cooperation will be small, and therefore will only make sense if the cost

of cooperation is also small. With current sharing patterns, there is little point in designing highly

scalable cooperative-caching schemes; all reasonable schemes perform similarly in the low-end of

the population range where cooperative caching works.

7.3 Streaming Media

Our final study is motivated by the observation that people are increasingly using the Internet to

download and view multimedia content, such as streaming audio and video. Compared with tradi-

tional Web workloads, these multimedia objects may require significantly more storage and trans-

mission bandwidth. As a result, performance optimizations such as streaming media proxy caches

and multicast delivery offer the potential to minimize the impact of delivering this content over the

Internet. However, few studies of streaming-media workloads exist. Therefore, the extent to which

these mechanisms will improve performance is unclear.

This study presents a detailed analysis of the characteristics of a client-based streaming-media

workload. As with the previous studies, we collect our workload using the network tracing system

deployed at the University of Washington Internet border. The primary goal of our analysis is to

characterize RTSP usage by the UW client population and to compare those characteristics to well-

studied HTTP Web workloads in terms of bandwidth utilization, server and object popularity, and

sharing patterns. We also evaluate the effectiveness of performance optimizations, such as proxy

caching and multicast delivery, on our streaming-media workload.

We find that, as expected, streaming media objects are orders of magnitude larger than traditional

Web objects. In particular, the median size of streaming media downloads is 400 times larger than

the median HTTP request size, and the mean RTSP download size is 175 times larger than the

133

mean HTTP size. Nevertheless, it is still the case that most streaming media objects are modest

in size (< 1 MB), are encoded at relatively low bit-rates (< 56 Kb/sec), and are short in duration

(< 10 mins). We observe a number of properties that indicate our streaming-media workload would

currently benefit less from proxy caching than current HTTP workloads do. Finally, we find that

multimedia workloads exhibit stronger temporal locality than we expected. During peak hours,

between 20–40% of active sessions share streams concurrently. This suggests that multicast and

stream-merging techniques may prove useful for these workloads.

7.4 Trace Collection and Analysis

We present the design and implementation of the network tracing and analysis system used to per-

form the previous caching studies. This system uses passive network monitoring to observe the

Web behavior of a large and diverse group of clients. The tracing system is designed to monitor

application-level Internet protocols, with the current implementation supporting HTTP and RTSP.

It is installed at the Internet border of the University of Washington (UW) and it observes all In-

ternet traffic that flows through the border. The tracing system was in use at the UW border for

approximately three years, from the Summer of 1998 through the Spring of 2001. During that time

period, the traffic load grew by a factor of three and the tracing system scaled to keep up with the

load increases with negligible packet loss. Our tracing system handled peak data rates of up to 175

Mbits/second and up to 55,000 packets per second.

The tracing system we developed has the following properties: it supports high-speed packet

monitoring with multiple network interfaces on the same machine; it supports monitoring connec-

tions with asymmetric routing paths; it uses a very conservative approach to maintaining privacy for

network users, including the constraint that no raw packet data will ever be stored directly on disk;

and it performs on-the-fly processing including TCP connection reconstruction and application-level

protocol parsing as a consequence of the privacy design constraints. Finally, as part of the tracing

system deployment we were forced to develop a methodology for detecting and filtering bogus SYN

packets from TCP SYN denial-of-service attacks that go through our tracing system.

134

7.5 Future Work

In this section, we discuss future research directions related to the sharing and caching workload

studies in this dissertation, and we discuss future research directions enabled by the development

of our tracing system. The future directions we discuss fall into three categories: analysis of new

application workloads; analysis of new user populations; and questions that remain unanswered in

the workload areas studied in this dissertation.

The Internet has experienced tremendous growth in recent years, not only in terms of new users,

but also in terms of new applications. Our study of streaming-media workloads examined the char-

acteristics of one such emerging application. We believe that the studying application workloads

will be important for the following new classes of applications.

One recent trend in Internet usage is peer-to-peer file sharing applications. This trend began

with Napster, an application dedicated to sharing of popular music audio files. In the Spring of

2001, the Napster service was terminated through a legal action in the United States, but a huge

number of replacement peer-to-peer applications were created to fill the void. Examples include

Gnutella, Kazaa, eDonkey, DirectConnect, Morpheus, and Blubster. These applications are used to

share many different forms of content including music, movies, application binaries, and images.

Similar to the situation with streaming-media protocols, many of the these peer-to-peer applications

use proprietary and undocumented protocols. However, the situation is not entirely bleak for the

purposes of application-level protocol monitoring because these proprietary protocols usually im-

plement only the search functionality, and the actual file transfers are performed using a standard

protocol such as HTTP or FTP.

Within the last few years, both cell phones and PDAs have begun to acquire Internet access

functionality. Because these devices are often resource constrained in terms of CPU, memory, and

power, detailed performance analysis of these new applications including their network behavior

has the potential to provide significant improvements for both end-user performance and energy

consumption. Many hand-held mobile devices currently use WAP 1.0 and are expected to implement

WAP 2.0 in the future. WAP is the Wireless Application Protocol, a standardized protocol to enable

delivery of information and interactive applications to digital wireless mobile devices. WAP 1.0

requires the use of a protocol gateway to convert from the WAP transport protocols to the standard

135

Internet protocols, whereas WAP 2.0 makes explicit use of the Internet protocol suite including TCP

and HTTP.

XML-based Web services is the final new class of applications where we believe future workload

analysis research is needed. Broadly defined, Web services provide the infrastructure for building

distributed applications that use the Internet for communication. The Web services standards al-

low different applications from different vendors to communicate and interoperate. In addition to

support for basic inter-machine communication, Web services includes support for application dis-

covery and typed data exchange. The Web services standardization efforts also attempt to ensure

that applications are not tied to any single operating system or programming language. The major

components of Web services are: SOAP, the Simple Object Access Protocol which is layered on top

of HTTP; UDDI, the Universal Discovery, Description, and Integration protocol; and WSDL, the

Web Services Description Language.

Although there is not widespread deployment of Web services applications at the present time,

major software companies such as IBM, BEA, Microsoft, and Sun are all investing significant re-

sources into the development of Web services software. The expectation is that the Web services pro-

tocols will form the basis for most future electronic business applications. With respect to caching,

one key difference between Web services workloads and traditional HTTP workloads is that the

communication endpoints for Web services are programs rather than people, and programs aren’t

nearly as good at dealing with inconsistent data as people are. In other words, people can often

identify stale data and decide to hit the reload button on a Web browser in those cases.

When considering the user populations that have been studied by previous research and by this

dissertation, we find that most tracing efforts have studied the characteristics of University client

populations. A few studies have also looked at corporate client populations, but one large segment

of the population which remains unstudied is clients that access the Internet through a commercial

Internet Service Provider (ISP). We think it would be particularly interesting to study the Web

traffic characteristics from a commercial ISP that offers broadband service such as DSL or cable-

modem service because broadband users are more likely to be representative of future Internet usage

characteristics.

Even in the area of sharing and caching characteristics of traditional HTTP workloads, there

are still questions that need to be resolved. For example, if browser caches could cooperate would

136

that eliminate the need for organizational proxy caches? To what extent does HTTP content exhibit

temporal locality over relatively long time-scales (such as weeks or even months)?

Finally, our work and others show that clients currently generate a high rate of requests to un-

cachable documents. Others also show that the server response content for many of these uncachable

documents does not change frequently. Understanding why these documents are marked uncachable

would be useful in order to learn how Web software should be changed to prevent unnecessary re-

transmissions of the same content from servers to clients. This question would best be answered in

the context of a raw trace rather than an anonymized trace. A raw trace would allow better attribu-

tion of the causes for uncachable Web content. For instance, one could determine which uncachable

pages are banner advertisements and which are product databases for an e-commerce site.

137

Bibliography

[Acharya et al. 98] S. Acharya and B. Smith. An experiment to characterize videos stored on the

web. In Proc. of ACM/SPIE Multimedia Computing and Networking 1998, Jan 1998.

[Agarwal et al. 98] R. Agarwal, J. Ayars, B. Hefta-Gaub, and D. Stammen. RealMedia File Format.

Internet Draft: draft-heftagaub-rmff-00.txt, Mar 1998.

[Almeida et al. 96] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizing

reference locality in the www. In Proc. of IEEE Intl. Conference on Parallel and Distributed

Information Systems ’96, Dec 1996.

[Anderson et al. 96] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and

R. Y. Wang. Serverless network file systems. ACM Trans. on Computer Systems, 14(1):41–

79, Feb 1996.

[Anderson et al. 97] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T. Leung,

R. Sites, M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuous profiling: Where have

all the cycles gone? In Proc. of the Sixteenth Symposium on Operating Systems Principles,

Oct 1997.

[Apisdorf et al. 97] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder. OC3MON: Flexible, af-

fordable, high-performance statistics collection. In Proc. of INET 97, Jun 1997.

[Balakrishnan et al. 98] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and R. Katz.

TCP behavior of a busy internet server: Analysis and improvements. In Proc. of IEEE

INFOCOM 1998, Mar 1998.

[Berners-Lee et al. 96] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer

Protocol — HTTP/1.0. ftp://ftp.isi.edu/in-notes/rfc1945.txt, May 1996.

138

[Breslau et al. 99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-

like Distributions: Evidence and Implications. In Proc. of IEEE INFOCOM 1999, pages

126–134, Mar 1999.

[Caceres et al. 98] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web proxy

caching: The devil is in the details. In Proc. of the Workshop on Internet Server Performance,

Jun 1998.

[Cao et al. 97] P. Cao and C. Liu. Maintaining strong consistency in the world-wide web. In Proc.

of the Seventeenth Intl. Conference on Distributed Computing Systems, May 1997.

[Cao et al. 98] P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic contents on the web.

In Proc. of the IFIP Intl. Conference on Distributed Systems Platforms and Open Distributed

Processing, Sep 1998.

[Cate 92] V. Cate. Alex – a global filesystem. In Proc. of the 1992 USENIX File Systems Workshop,

May 1992.

[Challenger et al. 99] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consistently

caching dynamic web data. In Proc. of IEEE INFOCOM 1999, Mar 1999.

[Chankhuntod et al. 96] A. Chankhuntod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A

hierarchical internet object cache. In Proc. of the 1996 USENIX Technical Conference, Jan

1996.

[Chesire et al. 01] M. Chesire, A. Wolman, G. M. Voelker, and H. M. Levy. Measurement and

analysis of a streaming-media workload. In Proc. of the 3rd USENIX Symposium on Internet

Technologies and Systems, Mar 2001.

[Cisco Systems 02] Cisco Systems. Catalyst 4000 family software configuration guide.

http://www.cisco.com/univercd/cc/td/doc/product/lan/cat4000/rel7 1/config/span.htm, [Ac-

cessed July 2002].

139

[Cunha et al. 95] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of www client-based

traces. Technical Report TR-95-010, Boston University, Computer Science Department, Apr

1995.

[Deutsch 96] P. Deutsch. RFC 1952: GZIP file format sepcification version 4.3. ftp://ftp.isi.edu/in-

notes/rfc1952.txt, May 1996.

[Douglis et al. 97a] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul. Rate of change and

other metrics: a live study of the World Wide Web. Technical Report 97.24.2, AT&T Labs,

Dec 1997.

[Douglis et al. 97b] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul. Rate of change and

other metrics: a live study of the World Wide Web. In Proc. of the 1st USENIX Symposium

on Internet Technologies and Systems, pages 147–158, Dec 1997.

[Douglis et al. 97c] F. Douglis, A. Haro, and M. Rabinovich. Hpp: Html macro-preprocessing to

support dynamic document caching. In Proc. of the 1st USENIX Symposium on Internet

Technologies and Systems, Dec 1997.

[Duska et al. 97] B. M. Duska, D. Marwood, and M. J. Feeley. The measured access characteristics

of world-wide-web client proxy caches. In Proc. of the 1st USENIX Symposium on Internet

Technologies and Systems, Dec 1997.

[Dykes et al. 02] S. G. Dykes and K. A. Robbins. Limitations and benefits of cooperative proxy

caching. IEEE Journal on Selected Areas in Communications, 2002.

[Eager et al. 00] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skimming: A technique for cost-

effective video-on-demand. In Proc. of ACM/SPIE Multimedia Computing and Networking

2000, Jan 2000.

[Eager et al. 99] D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth requirements for

on-demand data delivery. In Proc. of the 5th Int’l Workshop on Multimedia Information

Systems, Oct 1999.

140

[Engler et al. 96] D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing

using dynamic code generation. In Proc. of ACM SIGCOMM 1996, Aug 1996.

[Fan et al. 98] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable wide-area

cache sharing protocol. In Proc. of ACM SIGCOMM 1998, Sep 1998.

[Feeley et al. 95] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, and C. A.

Thekkath. Implementing global memory management in a workstation cluster. In Proc. of

the Fifteenth Symposium on Operating Systems Principles, Dec 1995.

[Feldmann 00] A. Feldmann. BLT: Bi-Layer Tracing of HTTP and TCP/IP. In Proc. of the Ninth

Int. World Wide Web Conference, May 2000.

[Feldmann et al. 99] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich. Perfor-

mance of web proxy caching in heterogeneous bandwidth environments. In Proc. of IEEE

INFOCOM 1999, pages 107–116, Mar 1999.

[Fielding et al. 99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol — HTTP/1.1. ftp://ftp.isi.edu/in-

notes/rfc2616.txt, Jun 1999.

[Fleischman 98] E. Fleischman. Advanced Streaming Format (ASF) Specification. Internet-Draft:

draft-fleischman-asf-01.txt, Feb 1998.

[Fraleigh et al. 01] C. Fraleigh, C. Diot, B. Lyles, S. B. Moon, P. Owezarski, D. Papagiannaki, and

F. A. Tobagi. Design and deployment of a passive monitoring infrastructure. In Proceedings

of PAM 2001: A Workshop on Passive and Active Measurements, Apr 2001.

[Freier et al. 96] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol Version 3.0. Internet-Draft:

http://wp.netscape.com/eng/ssl3/draft-302.txt, Nov 1996.

141

[Gadde et al. 00] S. Gadde, J. Chase, and M. Rabinovich. Web caching and content distribution: A

view from the interior. In Proc. of the Fifth Int. Web Caching and Content Delivery Workshop,

May 2000.

[Glassman 94] S. Glassman. A caching relay for the World Wide Web. In Proc. of the First Int.

World Wide Web Conference, May 1994.

[Gribble et al. 97] S. D. Gribble and E. A. Brewer. System design issues for Internet middleware

services: Deductions from a large client trace. In Proc. of the 1st USENIX Symposium on

Internet Technologies and Systems, pages 207–218, Dec 1997.

[Gwertzman et al. 95] J. Gwertzman and M. Seltzer. The case for geographical push-caching. In

Proceedings of 5th Workshop on Hot Topics in Operating Systems, May 1995.

[Gwertzman et al. 96] J. Gwertzman and M. Seltzer. World wide web cache consistency. In Proc.

of the 1996 USENIX Technical Conference, Jan 1996.

[Handley et al. 98] M. Handley and V. Jacobson. RFC 2327: SDP: Session Description Protocol,

Apr 1998.

[Huberman et al. 98] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose. Strong regularities in world

wide web surfing. Science, 280, Apr 1998.

[Hunt et al. 96] J. Hunt, K.-P. Vo, and W. Tichy. An empirical study of delta algorithms. In Proc.

of the IEEE Software and Configuration Maintenance Workshop 1996, Mar 1996.

[Karger et al. 99] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto,

B. Kim, L. Matkins, and Y. Yerushalmi. Web caching with consistent hashing. In Proc. of

the Eighth Int. World Wide Web Conference, May 1999.

[Kent et al. 98] S. Kent and R. Atkinson. RFC 2401: Security Architecture for the Internet Protocol,

Nov 1998.

142

[Keynote 01] Keynote perspective services [web page]. http://www.keynote.com/services/, [Ac-

cessed July 2001].

[Krishnamurthy et al. 00] B. Krishnamurthy and C. Wills. Analyzing factors that influence end-to-

end web performance. In Proc. of the Ninth Int. World Wide Web Conference, May 2000.

[Krishnamurthy et al. 97] B. Krishnamurthy and C. E. Wills. Study of piggyback cache validation

for proxy caches in the World Wide Web. In Proc. of the 1st USENIX Symposium on Internet

Technologies and Systems, Dec 1997.

[Krishnan et al. 98] P. Krishnan and B. Sugla. Utility of co-operating web proxy caches. In Proc.

of the Seventh Int. World Wide Web Conference, Apr 1998.

[Kristol et al. 97] D. Kristol and L. Montulli. RFC 2109: HTTP State Management Mechanism.

ftp://ftp.isi.edu/in-notes/rfc2109.txt, Feb 1997.

[Kroeger et al. 97] T. M. Kroeger, D. D. Long, and J. C. Mogul. Exploring the bounds of web

latency reduction from caching and prefetching. In Proc. of the 1st USENIX Symposium on

Internet Technologies and Systems, pages 13–22, Dec 1997.

[Kurcewicz et al. 98] M. Kurcewicz, W. Sylwestrzak, and A. Wierzbicki. A distributed WWW

cache. In Proc. of the Third Int. Web Caching Workshop, Jun 1998.

[Li 92] W. Li. Random texts exhibit zipf’s-law-like word frequency distribution. IEEE Transactions

on Information Theory, 1992.

[Mah 97] B. A. Mah. An empirical model of HTTP network traffic. In Proc. of IEEE INFOCOM

1997, pages 592–600, Apr 1997.

[Malan et al. 98] G. R. Malan and F. Jahanian. An extensible probe architecture for network proto-

col performance measurement. In Proc. of ACM SIGCOMM 1998, Sep 1998.

143

[Manley et al. 97] S. Manley and M. Seltzer. Web facts and fantasy. In Proc. of the 1st USENIX

Symposium on Internet Technologies and Systems, Dec 1997.

[McCanne et al. 93] S. McCanne and V. Jacobson. The BSD Packet Filter: A new architecture for

user-level packet capture. In Proc. of the Winter 1993 USENIX Technical Conference, 1993.

[McCreary et al. 00] S. McCreary and K. Claffy. Trends in Wide Area IP Traffic Patterns: A View

from Ames Internet Exchange [web page]. http://www.caida.org/outreach/papers/AIX0005/,

May 2000.

[Mena et al. 00] A. Mena and J. Heidemann. An empirical study of real audio traffic. In Proc. of

IEEE INFOCOM 2000, Mar 2000.

[Michel et al. 98] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacobson. Adap-

tive Web Caching: Towards a New Global Caching Architecture. Computer Networks and

ISDN Systems, 30(22–23):2169–2177, Nov 1998.

[Microsoft 01a] Microsoft. All About Windows Media Metafiles [web page].

http://msdn.microsoft.com/workshop/imedia/windowsmedia/crcontent/asx.asp, [Accessed

July 2001].

[Microsoft 01b] Microsoft. Windows Media Development Center [web page].

http://msdn.microsoft.com/windowsmedia/, [Accessed July 2001].

[Mills 91] D. L. Mills. Internet time synchronization: the network time protocol. IEEE Transac-

tions on Communications, Oct 1991.

[Mogul et al. 87] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet filter: An efficient

mechanism for user-level network code. In Proc. of the Eleventh Symposium on Operating

Systems Principles, Nov 1987.

[Mogul et al. 97] J. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential benefits of

delta encoding and data compression for http. In Proc. of ACM SIGCOMM 1997, Sep 1997.

144

[MPEG-2 Audio 94] MPEG-2 Standard. ISO/IEC Document 13818-3. Generic Coding of Moving

Pictures and Associated Audio Information, Part 3: Audio., 1994.

[MPEG-2 Video 94] MPEG-2 Standard. ISO/IEC Document 13818-2. Generic Coding of Moving

Pictures and Associated Audio Information, Part 2: Video., 1994.

[Netscape 95] Netscape. Persistent client state - http cookies [web page].

http://home.netscape.com/newsref/std/cookie spec.html, 1995.

[Nielsen 01] Nielsen Netratings. http://www.nielsen-netratings.com/ [web page], [Accessed July

2001].

[Oberhumer 02] M. F. Oberhumer. Lzo compression library [web page].

http://www.oberhumer.com/opensource/lzo/, [Accessed July 2002].

[Padmanabhan et al. 00] V. Padmanabhan and L. Qiu. The content and access dynamics of a busy

web site: Findings and implications. In Proc. of ACM SIGCOMM 2000, Aug 2000.

[Paxson 97] V. Paxson. End-to-end Internet packet dynamics. In Proc. of ACM SIGCOMM 1997,

Sep 1997.

[PGP 01] Pretty good privacy [web page]. http://www.pgpi.com/, [Accessed July 2001].

[Plonka 00] D. Plonka. UW-Madison Napster Traffic Measurement [web page].

http://net.doit.wisc.edu/data/Napster, Mar 2000.

[Rabinovich et al. 98] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are created equal: Co-

operative proxy caching over a wide area network. In Proc. of the Third Int. Web Caching

Workshop, Jun 1998.

[Ranum et al. 97] M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, and

E. Wall. Implementing a generalized tool for network monitoring. In Proc. of the 11th

Systems Administration Conference(LISA ’97), Oct 1997.

145

[RealNetworks 01a] Firewall PNA Proxy Kit [web page]. http://www.service.real.com/firewall/-

pnaproxy.html, [Accessed January 2001].

[RealNetworks 01b] RealNetworks Documentation Library [web page].

http://service.real.com/help/library/, [Accessed January 2001].

[RealNetworks 01c] Realsystem production and authoring guides [web page].

http://service.real.com/help/library/encoders.html, [Accessed January 2001].

[Rejaie et al. 99] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching mechanism for mul-

timedia playback streams in the internet. In Proc. of the Fourth Int. Web Caching Workshop,

Mar 1999.

[Rivest 92] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm, April 1992.

[Schulzrinne et al. 96] H. Schulzrinne, S. Casner, R. Fredrick, and V. Jacobson. RFC 1889: RTP:

A Transport Protocol for Real-Time Applications, April 1996.

[Schulzrinne et al. 98] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326: Real Time Streaming

Protocol (RTSP), Apr 1998.

[Sen et al. 99] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams. In

Proc. of IEEE INFOCOM 1999, Mar 1999.

[Shrager et al. 87] J. Shrager, T. Hogg, and B. Huberman. Observation of phase transitions in

spreading activation networks. Science, 236, 1987.

[Smith et al. 01] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott. What TCP/IP protocol headers

can tell us about the web. In Proc. of the ACM SIGMETRICS 2001 Conference, Jun 2001.

[Smith et al. 99] B. Smith, A. Acharya, T. Yang, and H. Zhu. Exploiting result equivalence in

caching dynamic web content. In Proc. of the 2nd USENIX Symposium on Internet Tech-

nologies and Systems, Oct 1999.

146

[Squid 01] Squid Internet Object Cache [web page]. http://squid.nlanr.net, [Accessed July 2001].

[Tcpdump 01] Tcpdump [web page]. http://www.tcpdump.org/, [Accessed July 2001].

[Tewari et al. 99] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design considerations for distributed

caching on the Internet. In Proc. of the Nineteenth Intl. Conference on Distributed Computing

Systems, May 1999.

[Touch 98] J. Touch. The LSAM proxy cache - a multicast distributed virtual cache. In Proc. of the

Third Int. Web Caching Workshop, Jun 1998.

[Valloppillil et al. 98] V. Valloppillil and K. W. Ross. Cache array routing protocol v1.0.

ftp://ftp.isi.edu/internet-drafts/draft-vinod-carp-v1-03.txt, Feb 1998.

[Van Der Merwe et al. 00] J. Van Der Merwe, R. Caceres, Y. hua Chu, and C. Sreenan. mmdump

- a tool for monitoring multimedia usage on the internet. Technical Report 00.2.1, AT&T

Labs, Feb 2000.

[W3C 98] W3C. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification [web

page]. http://www.w3.org/TR/1998/REC-smil-19980615/, Jun 1998.

[Warren et al. 99] P. Warren, C. Boldyreff, and M. Munro. Characterizing evolution in web sites:

Some case studies. In Proc. of the First Intl. Workshop on Web Site Evolution, Oct 1999.

[Wills et al. 99a] C. E. Wills and M. Mikhailov. Examining the cacheability of user-requested web

resources. In Proc. of the Fourth Int. Web Caching Workshop, Apr 1999.

[Wills et al. 99b] C. E. Wills and M. Mikhailov. Towards a better understanding of web resources

and server responses for improved caching. In Proc. of the Eighth Int. World Wide Web

Conference, pages 153–165, May 1999.

[Wolman et al. 99a] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,

D. Pinnel, A. Karlin, and H. Levy. Organization-based analysis of web-object sharing and

147

caching. In Proc. of the 2nd USENIX Symposium on Internet Technologies and Systems, Oct

1999.

[Wolman et al. 99b] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On

the scale and performance of cooperative web proxy caching. In Proc. of the Seventeenth

Symposium on Operating Systems Principles, Dec 1999.

[Wooster et al. 96] R. Wooster, S. Williams, and P. Brooks. Httpdump: A network http packet

snooper. Technical report, Apr 1996.

[Worrell 94] K. J. Worrell. Invalidation in large scale network object caches. Master’s thesis,

Department of Computer Science, Univ. of Colorado Boulder, 1994.

[Xingtech 00] Xingtech. Streamworks documentation [web page].

http://www.xingtech.com/support/docs/streamworks/, [Accessed July 2000].

[Yuhara et al. 94] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient packet demul-

tiplexing for multiple endpoints and large messages. In Proc. of the Winter 1994 USENIX

Technical Conference, Jan 1994.

[Zhang et al. 97] L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching. In Proc. of the

Second Int. Web Caching Workshop, Jun 1997.

[Zipf 49] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, 1949.

148

Vita

Alastair Wolman was born on November 2nd, 1966 in Morristown, New Jersey. He grew up

in Rumson, New Jersey and attended high school at Middlesex School in Concord, Massachusetts.

He attended Harvard University, where he received his B.A. in Computer Science in 1988. For the

next four years, he worked for Digital Equipment Corporation at the Cambridge Research Lab in

Cambridge, Massachusetts. In 1992, he headed west to Seattle, Washington for graduate school at

the University of Washington. He received his Master of Science degree in 1995, and his Ph.D.

in 2002. In November 2001, he started work in the Systems and Networking group at Microsoft

Research in Redmond, Washington.

