
SkipNet: A Scalable Overlay Network with Practical Locality Properties

Nicholas J.A. Harvey∗†, Michael B. Jones∗, Stefan Saroiu†, Marvin Theimer∗, Alec Wolman∗

Abstract: Scalable overlay networks such as Chord,
CAN, Pastry, and Tapestry have recently emerged as flexi-
ble infrastructure for building large peer-to-peer systems.
In practice, such systems have two disadvantages: They
provide no control over where data is stored and no guar-
antee that routing paths remain within an administrative
domain whenever possible. SkipNet is a scalable over-
lay network that provides controlled data placement and
guaranteed routing locality by organizing data primarily
by string names. SkipNet allows for both fine-grained and
coarse-grained control over data placement: Content can
be placed either on a pre-determined node or distributed
uniformly across the nodes of a hierarchical naming sub-
tree. An additional useful consequence of SkipNet’s lo-
cality properties is that partition failures, in which an en-
tire organization disconnects from the rest of the system,
can result in two disjoint, but well-connected overlay net-
works.

1 Introduction

Scalable overlay networks, such as Chord [27],
CAN [21], Pastry [23], and Tapestry [32], have recently
emerged as flexible infrastructure for building large peer-
to-peer systems. A key function that these networks en-
able is a distributed hash table (DHT), which allows data
to be uniformly diffused over all the participants in the
peer-to-peer system.

While DHTs provide nice load balancing properties,
they do so at the price of controlling where data is stored.
This has at least two disadvantages: Data may be stored
far from its users and it may be stored outside the adminis-
trative domain to which it belongs. This paper introduces
SkipNet, a distributed generalization of Skip Lists [20],
adapted to meet the goals of peer-to-peer systems. Skip-
Net is a scalable overlay network that supports traditional
overlay functionality as well as two locality properties
that we refer to as content locality and path locality.

Content locality refers to the ability to either explic-
itly place data on specific overlay nodes or distribute it
across nodes within a given organization. Path locality
refers to the ability to guarantee that message traffic be-
tween two overlay nodes within the same organization is
routed within that organization only.

∗Microsoft Research, Microsoft Corporation, Redmond, WA.
{nickhar, mbj, theimer, alecw}@microsoft.com

†Department of Computer Science and Engineering, University of
Washington, Seattle, WA. {nickhar, tzoompy}@cs.washington.edu

Content and path locality provide a number of advan-
tages for data retrieval, including improved availability,
performance, manageability, and security. For example,
nodes can store important data within their organization
(content locality) and nodes will be able to reach their
data through the overlay even if the organization becomes
disconnected from the rest of the Internet (path locality).
Storing data near the clients that use it also yields perfor-
mance benefits. Placing content onto a specific overlay
node—or a well-defined set of overlay nodes—enables
provisioning of those nodes to reflect demand. Content
placement also allows administrative control over issues
such as scheduling maintenance for machines storing im-
portant data, thus improving manageability.

Content locality can improve security by allowing one
to control the administrative domain in which data re-
sides. Even when encrypted and digitally signed, data
stored on an arbitrary overlay node outside the organiza-
tion is susceptible to denial of service (DoS) attacks as
well as traffic analysis. Although other techniques for im-
proving the resiliency of DHTs to DoS attacks exist [3],
content locality is a simple, zero-overhead technique.

Path locality provides additional security benefits to
an overlay that supports content locality. Although some
overlay designs [4] are likely to keep routing messages
within an organization most of the time, none guaran-
tee path locality. For example, without such a guaran-
tee the route from explorer.ford.com to mustang.ford.com
could pass through camaro.gm.com, a scenario that peo-
ple at ford.com might prefer to prevent. With path locality,
nodes requesting data within their organization traverse a
path that never leaves the organization.

Controlling content placement is in direct tension with
the goal of a DHT, which is to uniformly distribute data
across a system in an automated fashion. A significant
contribution of this paper is the concept of constrained
load balancing, which is a generalization that combines
these two notions: Data is uniformly distributed across a
well-defined subset of the nodes in a system, such as all
nodes in a single organization, all nodes residing within a
given building, or all nodes residing within one or more
data centers.

SkipNet supports efficient message routing between
overlay nodes, content placement, path locality, and con-
strained load balancing. It does so by employing two sep-
arate, but related address spaces: a string name ID space
as well as a numeric ID space. Node names and content
identifier strings are mapped directly into the name ID

space, while hashes of the node names and content iden-
tifiers are mapped into the numeric ID space. A single
set of routing pointers on each overlay node enables effi-
cient routing in either address space and a combination of
routing in both address spaces provides the ability to do
constrained load balancing.

A useful consequence of SkipNet’s locality properties
is resiliency against a common form of Internet failure.
Because SkipNet clusters nodes according to their name
ID ordering, nodes within a single organization gracefully
survive failures that disconnect the organization from the
rest of the Internet. In the case of uncorrelated, indepen-
dent failures, SkipNet has similar resiliency to previous
overlay networks [23, 27].

The basic SkipNet design, not including its enhance-
ments to support constrained load balancing or network
proximity-aware routing, has been concurrently and inde-
pendently invented by Aspnes and Shah [1]. As described
in Section 2, their work has a substantially different focus
than our work and the two efforts are complementary to
each other while still starting from the same underlying
inspiration.

The rest of this paper is organized as follows: Section 2
describes related work, Section 3 describes SkipNet’s ba-
sic design, Section 4 discusses SkipNet’s locality proper-
ties, Section 5 presents enhancements to the basic design,
Section 6 discusses design alternatives to SkipNet, Sec-
tion 7 presents an experimental evaluation, and Section 8
concludes the paper.

2 Related Work

A large number of peer-to-peer overlay network de-
signs have been proposed recently, such as CAN [21],
Chord [27], Freenet [6], Gnutella [10], Pastry [23],
Salad [9], Tapestry [32], and Viceroy [18]. SkipNet is de-
signed to provide the same functionality as existing peer-
to-peer overlay networks, and additionally to provide im-
proved content availability through explicit control over
content placement.

One key feature provided by systems such as CAN,
Chord, Pastry, and Tapestry is scalable routing perfor-
mance while maintaining a scalable amount of routing
state at each node. By scalable routing paths we mean
that the expected number of forwarding hops between
any two communicating nodes is small with respect to
the total number of nodes in the system. Chord, Pastry,
and Tapestry scale with log N , where N is the system
size, while maintaining log N routing state at each over-
lay node. CAN scales with D · N1/D, where D is a pa-
rameter with a typical value of 6, while maintaining an
amount of per-node routing state proportional to D.

A second key feature of these systems is that they are
able to route to destination addresses that do not equal the
address of any existing node. Each message is routed to
the node whose address is “closest” to that specified in the
destination field of a message; we interchangeably use the
terms “route” and “search” to mean routing to the closest

node to the specified destination. This feature enables im-
plementation of a distributed hash table (DHT) [11], in
which content is stored at an overlay node whose node
ID is closest to the result of applying a collision-resistant
hash function to that content’s name (i.e. consistent hash-
ing [15]).

Distributed hash tables have been used, for instance,
in constructing the PAST [24] and CFS [7] distributed
filesystems, the Overlook [29] scalable name service,
the Squirrel [14] cooperative web cache, and scalable
application-level multicast [5, 25, 22]. For most of these
systems, if not all of them, the overlay network on which
they were designed can easily be substituted with Skip-
Net.

SkipNet has a fundamental philosophical difference
from existing overlay networks, such as Chord and Pastry,
whose goal is to implement a DHT. The basic philosophy
of systems like Chord and Pastry is to diffuse content ran-
domly throughout an overlay in order to obtain uniform,
load-balanced, peer-to-peer behavior. The basic philos-
ophy of SkipNet is to enable systems to preserve useful
content and path locality, while still enabling load balanc-
ing over constrained subsets of participating nodes.

This paper is not the first to observe that locality prop-
erties are important in peer-to-peer systems. Keleher et
al. [16] make two main points: locality is a good thing,
and DHTs destroy locality. Vahdat et al. [30] raises the
locality issue as well. SkipNet addresses this problem di-
rectly: By using names rather than hashed identifiers to
order nodes in the overlay, natural locality based on the
names of objects is preserved. Furthermore, by arranging
content in name order rather than dispersing it, efficient
operations on ranges of names are possible in SkipNet,
enabling, among other things, constrained load balancing.

Aspnes and Shah [1] have independently invented the
same basic data structure that defines a SkipNet, which
they call a Skip Graph. Beyond that, they investigate
questions that are mostly orthogonal to those addressed in
this paper. In particular, they describe and analyze differ-
ent search and insertion algorithms and they focus on for-
mal characterization of Skip Graph invariants. In contrast,
our work is focused primarily on the content and path lo-
cality properties of the design, and we describe several ex-
tensions that are important in building a practical system:
network proximity-aware routing is obtained by means of
two auxiliary routing tables, and constrained load balanc-
ing is supported through a combination of searches in both
the string name and numeric address spaces that SkipNet
defines.

3 Basic SkipNet Structure

In this section, we introduce the basic design of Skip-
Net. We present the SkipNet architecture, including how
to route in SkipNet, and how to join and leave a SkipNet.

H
E
A
D

3
6

197

9

12
17

21

25
26

T
A
I
L

Figure 1. A perfect Skip List.

H
E
A
D

3
17

197

25

12
9

6

21

T
A
I
L

26

Figure 2. A probabilistic Skip List.

3.1 Analogy to Skip Lists

A Skip List, first described in Pugh [20], is a dictionary
data structure typically stored in-memory. A Skip List is
a sorted linked list in which some nodes are supplemented
with pointers that skip over many list elements. A “per-
fect” Skip List is one where the height of the ith node is
the exponent of the largest power-of-two that divides i.
Figure 1 depicts a perfect Skip List. Note that pointers at
level h have length 2h (i.e., they traverse 2h nodes). A
perfect Skip List supports searches in O(log N) time.

Because it is prohibitively expensive to perform in-
sertions and deletions in a perfect Skip List, Pugh sug-
gests a probabilistic scheme for determining node heights
while maintaining O(log N) searches with high probabil-
ity. Briefly, each node chooses a height such that the prob-
ability of choosing height h is 1/2h. Thus, with probabil-
ity 1/2 a node has height 1, with probability 1/4 it has
height 2, etc. Figure 2 depicts a probabilistic Skip List.

Whereas Skip Lists are an in-memory data structure
that is traversed from its head node, we desire a data struc-
ture that links together distributed computer nodes and
supports traversals that may start from any node in the
system. Furthermore, because peers should have uniform
roles and responsibilities in a peer-to-peer system, we de-
sire that the state and processing overhead of all nodes
be roughly the same. In contrast, Skip Lists maintain a
highly variable number of pointers per data record and ex-
perience a substantially different amount of traversal traf-
fic at each data record.

3.2 The SkipNet Structure

The key idea we take from Skip Lists is the notion
of maintaining a sorted list of all data records as well
as pointers that “skip” over varying numbers of records.
We transform the concept of a Skip List to a distributed
system setting by replacing data records with computer
nodes, using the string name IDs of the nodes as the data
record keys, and forming a ring instead of a list. The ring
must be doubly-linked to enable path locality, as is ex-
plained in Section 3.3.

Rather than having nodes store a highly variable num-
ber of pointers, as in Skip Lists, each SkipNet node stores
2 log N pointers, where N is the number of nodes in the
overlay system. Each node’s set of pointers is called its
routing table, or R-Table, since the pointers are used to

X

T

O
M

D

Z

A

V

Level

2 T T

1 M X

0 D Z

Level

2 D D

1 Z O

0 X T

Figure 3. SkipNet nodes ordered by name ID. Routing
tables of nodes A and V are shown.

V

Level: L = 0

L = 1

L = 3

L = 2

Ring 0 Ring 1

Ring 00 Ring 01 Ring 10 Ring 11

Ring

000

Ring

001

Ring

010

Ring

011

Ring

100

Ring

101

Ring

110

Ring

111

A

M

Z

T

OD

O

Z

M

A

X

T

V

D

X

TA

M

Z

V

D

X

DO

Z

V

O

M

X

TA

Root Ring

Figure 4. The full SkipNet routing infrastructure for an
8 node system, including the ring labels.

route message traffic between nodes. The pointers at level
h of a given node’s routing table point to nodes that are
roughly 2h nodes to the left and right of the given node.
Figure 3 depicts a SkipNet containing eight nodes and
shows the routing table pointers that nodes A and V main-
tain.

The SkipNet in Figure 3 is a “perfect” SkipNet: each
level h pointer traverses exactly 2h nodes. Figure 4 de-
picts the same SkipNet of Figure 3, arranged to show
all node interconnections at every level simultaneously.
All nodes are connected by the root ring formed by each
node’s pointers at level 0. The pointers at level 1 point to
nodes that are 2 nodes away and hence the overlay nodes
are implicity divided into two disjoint rings. Similarly,
pointers at level 2 form four disjoint rings of nodes, and
so forth. Note that rings at level h + 1 are obtained by
splitting a ring at level h into two disjoint sets, each ring
containing every second member of the level h ring.

Maintaining a perfect SkipNet in the presence of in-
sertions and deletions is impractical, as is the case with
perfect Skip Lists. To facilitate efficient insertions and
deletions, we derive a probabilistic SkipNet design. Each
ring at level h is split into two rings at level h + 1 by hav-
ing each node randomly and uniformly choose to which of
the two rings it belongs. With this probabilistic scheme,
insertion/deletion of a node only affects two other nodes
in each ring to which the node has randomly chosen to be-

long. Furthermore, a pointer at level h still skips over 2h

nodes in expectation, and routing is possible in O(log N)
forwarding hops with high probability.

Each node’s random choice of ring memberships can
be encoded as a unique binary number, which we refer to
as the node’s numeric ID. As illustrated in Figure 4, the
first h bits of the number determine ring membership at
level h. For example, node X’s numeric ID is 011 and its
membership at level 2 is determined by taking the first
2 bits of 011, which designate Ring 01. As described
in [27], there are advantages to using a collision-resistant
hash (such as SHA-1) of the node’s DNS name as the nu-
meric ID. The SkipNet design does not require the use of
hashing to generate nodes’ numeric IDs; we only require
that numeric IDs are random and unique.

Because the numeric IDs of nodes are unique they can
be thought of as a second address space that is maintained
by the same SkipNet data structure. Whereas SkipNet’s
string address space is populated by node name IDs that
are not uniformly distributed throughout the space, Skip-
Net’s numeric address space is populated by node nu-
meric IDs that are uniformly distributed. The uniform dis-
tribution of numeric IDs in the numeric space is what en-
sures that our routing table construction yields routing ta-
ble entries that skip over the appropriate number of nodes.

Readers familiar with Chord may have observed that
SkipNet’s routing pointers are exponentially distributed in
a manner similar to Chord’s: The pointer at level h hops
over 2h nodes in expectation. The fundamental differ-
ence is that Chord’s routing pointers skip over 2h nodes in
the numeric space. In contrast SkipNet’s pointers, when
considered from level 0 upward, skip over 2h nodes in
the name ID space and, when considered from the top
level downward, skip over 2h nodes in the numeric ID
space. Chord guarantees O(log N) routing and node in-
sertion performance by uniformly distributing node iden-
tifiers in its numeric address space. SkipNet guarantees
O(log N) performance of node insertion and routing in
both the name ID and numeric ID spaces by uniformly
distributing numeric IDs and leveraging the sorted order
of name IDs.

3.3 Routing by Name ID

Routing/searching by name ID in SkipNet is based on
the same basic principle as searching in Skip Lists: Fol-
low pointers that route closest to the intended destination.
At each node, a message will be routed along the highest-
level pointer that does not point past the destination value.
Routing terminates when the message arrives at a node
whose name ID is closest to the destination. Figure 5
presents this algorithm in pseudocode.

Since nodes are ordered by name ID along each ring
and a message is never forwarded past its destination, all
nodes encountered during routing have name IDs between
the source and the destination. Thus, when a message
originates at a node whose name ID shares a common
prefix with the destination, all nodes traversed by the mes-

SendMsg(nameID, msg) {
if(LongestPrefix(nameID,localNode.nameID)==0)

msg.dir = RandomDirection();
else if(nameID<localNode.nameID)

msg.dir = counterClockwise;
else

msg.dir = clockwise;
msg.nameID = nameID;
RouteByNameID(msg);

}

// Invoked at all nodes (including the source and
// destination nodes) along the routing path.
RouteByNameID(msg) {

// Forward along the longest pointer
// that is between us and msg.nameID.
h = localNode.maxHeight;
while (h >= 0) {

nbr = localNode.RouteTable[msg.dir][h];
if (LiesBetween(localNode.nameID, nbr.nameID,

msg.nameID, msg.dir)) {
SendToNode(msg, nbr);
return;

}
h = h - 1;

}
// h<0 implies we are the closest node.
DeliverMessage(msg.msg);

}

Figure 5. Algorithm for routing by name ID in SkipNet.

sage have name IDs that share that same prefix. Because
rings are doubly-linked, this scheme can route using ei-
ther right or left pointers depending upon whether the
source’s name ID is smaller or greater than the destina-
tion’s. The key observation of this scheme is that routing
by name ID traverses only nodes whose name IDs share a
non-decreasing prefix with the destination ID.

If the source name ID and the destination name ID
share no common prefix, a message can be routed in either
direction. For the sake of fairness, we randomly pick a di-
rection so that nodes whose name IDs are near the middle
of the sorted ordering do not get a disproportionately large
share of the forwarding traffic.

The number of message hops when routing by name
ID is O(log N) with high probability. For a proof of this,
see [12].

3.4 Routing by Numeric ID

It is also possible to route messages efficiently to a
given numeric ID. In brief, the routing operation begins by
examining nodes in the level 0 ring until a node is found
whose numeric ID matches the destination numeric ID in
the first digit. At this point the routing operation jumps up
to this node’s level 1 ring, which also contains the destina-
tion node. The routing operation then examines nodes in
this level 1 ring until a node is found whose numeric ID
matches the destination numeric ID in the second digit.
As before, we know that this node’s level 2 ring must also
contain the destination node, and thus the routing opera-
tion proceeds in this level 2 ring.

This procedure repeats until we cannot make any more
progress — we have reached a ring at some level h such
that none of the nodes in that ring share h + 1 digits with
the destination numeric ID. We must now deterministi-
cally choose one of the nodes in this ring to be the desti-

// Invoked at all nodes (including the source and
// destination nodes) along the routing path.
// Initially:
// msg.ringLvl = -1
// msg.startNode = msg.bestNode = null
// msg.finalDestination = false
RouteByNumericID(msg) {

if (msg.numID == localNode.numID ||
msg.finalDestination) {

DeliverMessage(msg.msg);
return;

}

if (localNode == msg.startNode) {
// Done traversing current ring.
msg.finalDestination = true;
SendToNode(msg.bestNode);
return;

}

h = CommonPrefixLen(msg.numID, localNode.numID);
if (h > msg.ringLvl) {

// Found a higher ring.
msg.ringLvl = h;
msg.startNode = msg.bestNode = localNode;

} else if (abs(localNode.numID - msg.numID) <
abs(msg.bestNode.numID - msg.numID)) {

// Found a better candidate for current ring.
msg.bestNode = localNode;

}

// Forward along current ring.
nbr = localNode.RouteTable[clockWise][msg.ringLvl];
SendToNode(nbr);

}

Figure 6. Algorithm to route by numeric ID in SkipNet

nation node. Our algorithm defines the destination node
to be the node whose numeric ID is numerically closest to
destination numeric ID amongst all nodes in this highest
ring. Figure 6 presents this algorithm in pseudocode.

As an example, imagine that the numeric IDs in Fig-
ure 4 are 4 bits long and that node Z’s ID is 1000 and
node O’s ID is 1001. If we want to route a message from
node A to destination 1011 then A will first forward the
message to node D because D is in ring 1. D will then
forward the message to node O because O is in ring 10.
O will forward the message to Z because it is not in ring
101. Z will forward the message onward around the ring
(and hence back) to O for the same reason. Since none
of the members of ring 10 belong to ring 101, node O
will be picked as the final message destination because its
numeric ID is closest to 1011 of all ring 10 members.

The number of message hops when routing by numeric
ID is O(log N) with high probability. For a proof of this,
see [12].

Some intuition for why SkipNet can support efficient
routing by both name ID and numeric ID with the same
data structure is illustrated in Figure 4. Note that the root
ring, at the bottom, is sorted by name ID and, collectively,
the top-level rings are sorted by numeric ID. For any given
node, the SkipNet rings to which it belongs precisely form
a Skip List. Thus efficient searches by name ID are pos-
sible. Furthermore, if you construct a trie on all nodes’
numeric IDs, the nodes of the resulting trie would be in
one-to-one correspondence with the SkipNet rings. This
suggests that efficient searches by numeric ID are also
possible.

InsertNode(nameID, numID) {
msg = new JoinMessage();
msg.operation = findTopLevelRing;
RouteByNumericID(numID, msg);

}

DeliverMessage(msg) {
...
else if (msg.operation == findTopLevelRing) {

msg.ringLvl =
CommonPrefix(localNode.numID, msg.numID);

msg.ringNbrClockWise = new Node[msg.ringLvl];
msg.ringNbrCClockWise = new Node[msg.ringLvl];
msg.doInsertions = false;
CollectRingInsertionNeighbors(msg);

}
else ...

}

// Invoked at every intermediate routing hop.
CollectRingInsertionNeighbors(msg) {

if (msg.doInsertions) {
InsertIntoRings(msg.ringNbrClockWise,

msg.ringNbrCClockWise);
return;

}

while (msg.ringLvl >= 0) {
nbr = localNode.RouteTable[clockWise][msg.ringLvl];
if (LiesBetween(localNode.nameID, msg.nameID,

nbr.nameID, clockWise)) {
// Found an insertion neighbor.
msg.ringNbrClockWise[msg.ringLvl] = nbr;
msg.ringNbrCClockWise[msg.ringLvl] = localNode;
msg.ringLvl = msg.ringLvl-1;

} else {
// Keep looking
SendToNode(msg, nbr);
return;

}
}

msg.doInsertions = true;
SendToNode(msg, msg.joiningNode);

}

Figure 7. Algorithm to insert a SkipNet node.

3.5 Node Join and Departure

To join a SkipNet, a newcomer must first find the top-
level ring that corresponds to the newcomer’s numeric ID.
This amounts to routing a message to the newcomer’s nu-
meric ID, as described in Section 3.4.

The newcomer then finds its neighbors in this top-
level ring, using a search by name ID within this ring
only. Starting from one of these neighbors, the newcomer
searches for its name ID at the next lower level and thus
finds its neighbors at this lower level. This process is re-
peated for each level until the newcomer reaches the root
ring. For correctness, the existing nodes only point to the
newcomer after it has joined the root ring; the newcomer
then notifies its neighbors in each ring that it should be
inserted next to them. Figure 7 presents this algorithm in
pseudocode.

As an example, imagine inserting node O into the Skip-
Net of Figure 4. Node O initiates a search by numeric ID
for its own ID (101) and the resulting insertion message
ends up at node Z in ring 10 since that is the highest non-
empty ring that shares a prefix with node O’s numeric ID.
Since Z is the only node in ring 10, Z concludes that it
is both the clockwise and counter-clockwise neighbor of
node O in this ring.

In order to find node O’s neighbors in the next lower
ring (ring 1), node Z forwards the insertion message to
node D. Node D then concludes that D and V are the
neighbors of node O in ring 1. Similarly, node D for-
wards the insertion message to node M in the root ring,
who concludes that node O’s level 0 neighbors must be M
and T. The insertion message is returned to node O, who
then instructs all of its neighbors to insert it into the rings.

The key observation for this algorithm’s efficiency is
that a newcomer searches for its neighbors at a certain
level only after finding its neighbors at all higher levels.
As a result, the search by name ID will traverse only a few
nodes within each ring to be joined: The range of nodes
traversed at each level is limited to the range between the
newcomer’s neighbors at the next higher level. Therefore,
with high probability, a node join in SkipNet will traverse
O(log N) hops (for a proof see [12]).

The basic observation in handling node departures is
that SkipNet can route correctly as long as the bottom
level ring is maintained. All pointers but the level 0 ones
can be regarded as routing optimization hints, and thus
are not necessary to maintain routing protocol correct-
ness. Therefore, like Chord and Pastry, SkipNet maintains
and repairs the upper-level ring memberships by means
of a background repair process. In addition, when a node
voluntarily departs from the SkipNet, it can proactively
notify all of its neighbors to repair their pointers immedi-
ately.

To maintain the root ring correctly, each SkipNet node
maintains a leaf set that points to additional nodes along
the root ring, for redundancy. In our current implementa-
tion we use a leaf set size of 16, just as Pastry does.

4 Useful Locality Properties of SkipNet

In this section we discuss some of the useful locality
properties that SkipNet is able to provide, and their con-
sequences.

4.1 Content and Routing Path Locality

Given the basic structure of SkipNet, describing how
SkipNet supports content and path locality is straightfor-
ward. Incorporating a node’s name ID into a content name
guarantees that the content will be hosted on that node. As
an example, to store a document doc-name on the node
john.microsoft.com, naming it john.microsoft.com/doc-
name is sufficient.

SkipNet is oblivious to the naming convention used
for nodes’ name IDs. Our simulations and deployments
of SkipNet use DNS names for name IDs, after suit-
ably reversing the components of the DNS name. In this
scheme, john.microsoft.com becomes com.microsoft.john,
and thus all nodes within microsoft.com share the
com.microsoft prefix in their name IDs. This yields path
locality for organizations in which all nodes share a single
DNS suffix (and hence share a single name ID prefix).

4.2 Constrained Load Balancing

As mentioned in the Introduction, SkipNet supports
Constrained Load Balancing (CLB). To implement CLB,
we divide a data object’s name into two parts: a part that
specifies the set of nodes over which DHT load balancing
should be performed (the CLB domain) and a part that is
used as input to the DHT’s hash function (the CLB suffix).
In SkipNet the special character ‘!’ is used as a delimiter
between the two parts of the name.

For example, suppose we stored a document us-
ing the name msn.com/DataCenter!TopStories.html. The
CLB domain indicates that load balancing should oc-
cur over all nodes whose names begin with the prefix
msn.com/DataCenter. The CLB suffix, TopStories.html,
is used as input to the DHT hash function, and this de-
termines the specific node within msn.com/DataCenter
on which the document will be placed. Note that stor-
ing a document with CLB results in the document be-
ing placed on precisely one node within the CLB domain
(although it would be possible to store replicas on other
nodes). If numerous other documents were also stored
in the msn.com/DataCenter CLB domain, then the docu-
ments would be uniformly distributed across all nodes in
that domain.

To search for a data object that has been stored using
CLB, we first search for any node within the CLB domain
using search by name ID. To find the specific node within
the domain that stores the data object, we perform a search
by numeric ID within the CLB domain for the hash of the
CLB suffix.

The search by name ID is unmodified from the descrip-
tion in Section 3.3, and takes O(log N) message hops.
The search by numeric ID is constrained by a name ID
prefix and thus at any level must effectively step through
a doubly-linked list rather than a ring. Upon encounter-
ing the right boundary of the list (as determined by the
name ID prefix boundary), the search must reverse direc-
tion in order to ensure that no node is overlooked. Re-
versing directions in this manner affects the performance
of the search by numeric ID by at most a factor of two,
and thus O(log N) message hops are required in total.

Note that both traditional system-wide DHT semantics
as well as explicit content placement are special cases of
constrained load balancing: system-wide DHT semantics
are obtained by placing the ‘!’ hashing delimiter at the
beginning of a document name. Omission of the hashing
delimiter and choosing the name of a data object to have a
prefix that matches the name of a particular SkipNet node
will result in that data object being placed on that SkipNet
node.

Constrained load balancing can be performed over any
naming subtree of the SkipNet but not over an arbitrary
subset of the nodes of the overlay network. Another lim-
itation is that CLB domain is encoded in the name of a
data object. Thus, transparent remapping to a different
load balancing domain is not possible.

4.3 Fault Tolerance

Previous studies [17, 19] indicate that network con-
nectivity failures in the Internet today are due primarily
to Border Gateway Protocol (BGP) misconfigurations and
faults. Other hardware, software and human failures play
a lesser role. As a result, node failures in overlay networks
are not independent; instead, nodes belonging to the same
organization or AS tend to fail together. We consider both
correlated and independent failure cases in this section.

4.3.1 Independent Failures

SkipNet’s tolerance to uncorrelated, independent fail-
ures is much the same as previous overlay designs’ (e.g.,
Chord and Pastry), and is achieved through similar mech-
anisms. The key observation in failure recovery is that
maintaining correct neighbor pointers in the level 0 ring is
enough to ensure correct functioning of the overlay. Since
each node maintains a leaf set of 16 neighbors at level 0,
the level 0 ring pointers can be repaired by replacing them
with the leaf set entries that point to the nearest live nodes
following the failed node. The live nodes in the leaf set
may be contacted to repopulate the leaf set fully.

SkipNet also employs a background stabilization
mechanism that gradually updates all necessary routing
table entries when a node fails. Any query to a live, reach-
able node will still succeed during this time; the stabiliza-
tion mechanism simply restores optimal routing.

4.3.2 Failures along Organization Boundaries

In previous peer-to-peer overlay designs [21, 27, 23,
32], node placement in the overlay topology is deter-
mined by a randomly chosen numeric ID. As a result,
nodes within a single organization are placed uniformly
throughout the address space of the overlay. While a uni-
form distribution facilitates the O(log N) routing perfor-
mance of the overlay it makes it difficult to control the
effect of physical link failures on the overlay network.
In particular, the failure of a inter-organizational network
link may manifest itself as multiple, scattered link failures
in the overlay. Indeed, it is possible for each node within
a single organization that has lost connectivity to the In-
ternet to become disconnected from the entire overlay and
from all other nodes within the organization. Section 7.4
reports experimental results that confirm this observation.

Since SkipNet name IDs tend to encode organizational
membership, and nodes with common name ID prefixes
are contiguous in the overlay, failures along organization
boundaries do not completely fragment the overlay, but
instead result in ring segment partitions. Consequently,
a significant fraction of routing table entries of nodes
within the disconnected organization still point to live
nodes within the same network partition. This property
allows SkipNet to gracefully survive failures along orga-
nization boundaries. Furthermore, the disconnected orga-
nization’s SkipNet segment can be efficiently re-merged
with the external SkipNet when connectivity is restored,
as described in a related paper [13].

4.4 Security

In this section, we discuss some security consequences
of SkipNet’s content and path locality properties. Recent
work [3] on improving the security of peer-to-peer sys-
tems has focused on certification of node identifiers and
the use of redundant routing paths. The security advan-
tages of content and path locality depend on an access
control mechanism for creation of name IDs. SkipNet
does not directly provide this mechanism but rather as-
sumes that it is provided at another layer. Our use of DNS
names for name IDs does provide this mechanism: Arbi-
trary nodes cannot create global DNS names containing
the suffix of a registered organization without its permis-
sion.

Path locality allows SkipNet to guarantee that mes-
sages between two machines within a single administra-
tive domain that uses a single name ID prefix will never
leave the administrative domain. Thus, these messages
are not susceptible to traffic analysis or denial-of-service
attacks by machines located outside of the administrative
domain. Furthermore, traffic that is internal to an orga-
nization is not susceptible to a Sybil attack [8] originat-
ing from a foreign organization: Creating an unbounded
number of nodes outside microsoft.com will not allow the
attacker to see any traffic internal to microsoft.com, nor
allow the attacker to usurp control over documents placed
specifically within microsoft.com.

In Chord, the nodes belonging to an administrative
domain (for example, microsoft.com) are uniformly dis-
persed throughout the overlay. Thus, intercepting a sig-
nificant portion of the traffic to microsoft.com may re-
quire that an attacker create a large number of nodes. In
SkipNet, the nodes belonging to an administrative domain
form a contiguous segment of the overlay. Thus, an at-
tacker might attempt to target microsoft.com by creating
nodes (for example, microsofa.com) that are adjacent to
the target domain. Thus a security disadvantage of Skip-
Net is that it may be possible to target traffic between an
administrative domain and the outside world with fewer
attacking nodes than would be necessary in systems such
as Chord. We believe that susceptibility to these kinds of
attacks is a small price to pay in return for the benefits
provided by path and content locality.

4.5 Range Queries

Since SkipNet’s design is based on and inspired by
Skip Lists, it inherits their functionality and flexibility
in supporting efficient range queries. In particular, since
nodes and data are stored in name ID order, documents
sharing common prefixes are stored over contiguous ring
segments. Performing range queries in SkipNet is there-
fore equivalent to routing along the corresponding ring
segment. Because our current focus is on SkipNet’s archi-
tecture and locality properties, we do not discuss the use
of range queries for implementing various higher-level
data query operators further in this paper.

5 SkipNet Enhancements
This section presents several optimizations and en-

hancements to the basic SkipNet design.

5.1 Sparse and Dense Routing Tables
The basic SkipNet design may be modified in order

to improve routing performance. Thus far in our discus-
sions, SkipNet numeric IDs consist of random binary dig-
its. However, we can also use non-binary random digits,
which changes the ring structure depicted in Figure 4, the
number of pointers stored per node, and the expected rout-
ing cost. We denote the number of different possibilities
for a digit by k; in the binary digit case, k = 2. If k = 3,
the root ring of SkipNet remains a single ring, but there
are now three level 1 rings, nine level 2 rings, etc. As
k increases, the total number of pointers in the R-Table
will decrease. Because there are fewer pointers, it will
take more routing hops to get to any particular node. We
call the routing table that results from this modification a
sparse R-Table with parameter k.

It is also possible to build a dense R-Table by addition-
ally storing k − 1 pointers to contiguous nodes at each
level of the routing table and in both directions. In this
case, the expected number of search hops decreases while
the expected number of pointers at a node increases.

Increasing k makes the sparse R-Table sparser and
the dense R-Table denser. The density parameter k and
choice of sparse or dense construction can be used to con-
trol the amount routing state used by all SkipNet routing
tables, and in Section 7 we examine the relationship be-
tween routing performance and the amount of routing ta-
ble state maintained.

Implementing node join and departure in the case of
sparse R-Tables requires no modification to our previous
algorithms. For dense R-Tables, the node join message
must traverse and gather information about at least k −
1 nodes in both directions in every ring containing the
newcomer, before descending to the next ring. As before,
node departure merely requires notifying every neighbor.

5.2 Duplicate Pointer Elimination
Two nodes that are neighbors in a ring at level h

may also be neighbors in a ring at level h + 1. In
this case, these two nodes maintain “duplicate” pointers
to each other at levels h and h + 1. Intuitively, rout-
ing tables with more distinct pointers yield better rout-
ing performance than tables with fewer distinct pointers,
and hence duplicate pointers reduce the effectiveness of a
routing table. Replacing a duplicate pointer with a suit-
able alternative, such as the following neighbor in the
higher ring, improves routing performance by a moder-
ate amount (our experiments indicate improvements typi-
cally around 25%). Routing table entries adjusted in this
fashion can only be used when routing by name ID since
they violate the invariant that a node point to its closest
neighbor on a ring, which is required for correct routing
by numeric ID.

5.3 Incorporating Network Proximity for Rout-
ing by Name ID

In SkipNet, a node’s neighbors are determined by a
random choice of ring memberships (i.e., numeric IDs)
and by the ordering of name IDs within those rings.
Accordingly, the SkipNet overlay is constructed with-
out direct consideration of the physical network topology,
potentially hurting routing performance. For example,
when sending a message from the node saturn.com/nodeA
to the node chrysler.com/nodeB, both in the USA, the
message might get routed through the intermediate node
jaguar.com/nodeC in the UK. This would result in a much
longer path than if the message had been routed through
another intermediate node in the USA.

To deal with this problem, we introduce a second rout-
ing table called the P-Table, which is short for proxim-
ity table. The goal of the P-Table is to maintain routing
in O(log N) hops, while also ensuring that each hop has
low cost in terms of network latency. Our P-Table de-
sign is inspired by Pastry’s proximity-aware routing ta-
bles [4]. To incorporate network proximity into SkipNet,
the key observation is that any node that is roughly the
right distance away in name ID space can be used as an
acceptable routing table entry that will maintain the un-
derlying O(log N) routing performance. For example, it
doesn’t matter whether a P-Table entry at level 3 points to
the node that is exactly 8 nodes away or to one that is 7 or
9 nodes away; statistically the number of forwarding hops
that messages will take will end up being the same. How-
ever, if the 7th or 9th node is nearby in network distance
then using it as the P-Table entry can yield substantially
better routing performance. In fact, the P-Table entry at
level h can be anywhere between 2h and 2h+1 nodes away
while maintaining O(log N) routing performance.

To construct its P-Table, a node needs to locate a set
of candidate nodes that are close in terms of network dis-
tance and whose name IDs are appropriately distributed
around the root ring. Unlike Chord and Pastry, in SkipNet
it is difficult to estimate distance along the root ring sim-
ply by looking at a candidate node’s name ID. We solve
this problem by observing that a node’s basic routing table
(the R-Table) conveniently divides the root ring into in-
tervals of exponentially increasing size. Thus, two point-
ers at adjacent levels in the R-Table provide the name ID
boundaries of a contiguous interval along the root ring.
Given a node, we examine these intervals to determine
which P-Table entry it is a candidate for. We discover
candidate nodes that are nearby using a recursive process:
we start at a nearby seed node and discover other nearby
nodes by querying the P-Table of the seed node. Finally,
we determine that two nodes are near each other by esti-
mating the round-trip latency between them.

The following section provides a detailed description
of the algorithm that a SkipNet node uses to construct its
P-Table. In [12], we provide an informal analysis of the
performance of the P-Table routing and P-Table construc-
tion algorithms.

5.3.1 P-Table Construction
When a node joins SkipNet it first constructs its R-

Table. P-Table construction is then initiated by copying
the entries of the R-Table to a separate list, where they
are sorted by name ID and then duplicate entries are elim-
inated. Duplicates and out-of-order entries can arise in
this list due to the probabilistic nature of constructing the
R-Table.

The joining node then constructs a P-Table join mes-
sage that contains the sorted list of endpoints: a list of j
nodes defining j−1 intervals. The joining node sends this
P-Table join message to a seed node – a node that should
be nearby in terms of network distance.

Every node that receives a P-Table join message uses
its own P-Table entries to fill in the intervals with “can-
didate” nodes. After filling in any possible intervals, the
node checks whether any of the intervals are still empty.
If so, the node forwards the join message, using its own P-
Table entries, towards an unfilled interval. [12] explains
why forwarding the join message to the the farthest un-
filled interval from the joining node yields the smallest
expected number of insertion forwarding hops. If all the
intervals have at least one candidate, the node sends the
completed join message back to the original joining node.

When the original node receives its own join message,
it chooses one candidate node per interval as its P-Table
entry. The choice between candidate nodes is performed
by estimating the network latency to each candidate and
choosing the closest node.

We now summarize a few remaining key details of P-
Table construction. Since SkipNet can route either clock-
wise or counter-clockwise, the P-Table contains intervals
that cover the address space in both directions from the
joining node. Thus two join messages are sent from the
same starting node.

The effectiveness of P-Table routing entries is depen-
dent to a great extent on finding nearby nodes. The basis
of this process is finding a good seed node. In our sim-
ulator, we implemented two strategies for locating a seed
node. Our first strategy uses global knowledge from the
simulator topology model to find the closest node in the
entire system. The second and more realistic strategy is
that we choose the seed node at random, and then run the
P-Table join algorithm twice. We use the first run of the P-
Table join algorithm to locate a nearby seed, and the sec-
ond run to construct a better P-table based on the nearby
seed. Section 7.6 summarizes a performance evaluation
of these two approaches.

After the initial P-Table is constructed, SkipNet con-
stantly tries to improve the quality of its P-Table entries,
and adjusts to node joins and departures, by means of a
periodic stabilization algorithm. The P-Table is updated
periodically so that the P-Table segment endpoints accu-
rately reflect the distribution of name IDs in the Skip-
Net, which may change over time. The periodic mech-
anism used to update P-Table entries is very similar to the
initial construction algorithm presented above. One key

difference between the update mechanism and the initial
construction mechanism is that for update, the current P-
Table entries are considered as candidate nodes in addi-
tion to the candidates returned by the P-Table join mes-
sage. The other difference is that for update, the seed node
is chosen as the best candidate from the existing P-Table.
Finally, the P-Table entries may also be incrementally up-
dated as node joins and departures are discovered through
ordinary message traffic.

5.4 Incorporating Network Proximity for Rout-
ing by Numeric ID

We add a third routing table, the C-Table, to incorpo-
rate network proximity when searching by numeric ID.
Constrained Load Balancing (CLB), because it involves
searches by both name ID and numeric ID, takes advan-
tage of both the P-Table and the C-Table. Because search
by numeric ID as part of a CLB search must stay within
the CLB domain, C-Table entries that step outside the do-
main cannot be used. When such an entry is encountered,
the CLB search must revert to using the R-Table.

The C-Table has identical functionality and design to
the routing table that Pastry maintains [23]. Further de-
tails of the C-Table data structure and construction pro-
cess can be found in [12].

6 Design Alternatives
SkipNet’s locality properties can be obtained to a lim-

ited degree by suitable extensions to existing overlay net-
work designs. We explore several such extensions in this
section. However, none of these design alternatives pro-
vides all of SkipNet’s locality advantages.

The space of alternative design choices can be divided
into three cases: Rely on the inherent locality properties
of the underlying IP network and DNS naming instead of
using an overlay network; use a single overlay network—
possibly augmented—that supports locality properties; or
use multiple overlay networks that provide locality by
spanning different sets of member nodes.

6.1 IP routing and DNS naming
A simple alternative to SkipNet’s content placement

scheme is to route directly using IP after a DNS lookup.
This approach would also arguably provide path locality
since most organizations structure their internal networks
in a path-local manner. However, discarding the overlay
network also discards all of its advantages, including:

• Implicit support for DHTs, and in the case of Skip-
Net, support for constrained load balancing.

• Seamless reassignment of traffic to well-defined al-
ternative nodes in the presence of node failures.

• Better support for higher level abstractions, such
as application-level multicast [5, 25, 22] and load-
aware replication [29].

• The ability to reach named destinations independent
of the availability of the DNS name lookup service.

6.2 Single Overlay Networks

Existing overlays are based on DHTs and depend on
random assignment of node IDs in order to obtain a uni-
form distribution of nodes within their address spaces. To
support explicit content placement onto a particular node
requires changing either node or data naming. One could
name a node with the hash of the data object’s name, or
some portion of its name. This scheme effectively virtu-
alizes overlay nodes so that each node joins the overlay
once per data object.

The drawback of this solution is that separate routing
tables are required for each local data object. This will
result in a prohibitive cost whenever a single node needs
to store more than a few hundred data objects due to the
network traffic overhead of building and maintaining large
numbers of routing table entries.

Alternatively, one could change object names to use
a two-part naming scheme, much like in SkipNet, where
content names consist of unique node addresses concate-
nated to local, node-relative, names. Although this ap-
proach supports content placement, it does not support
guaranteed path locality nor constrained load balanc-
ing (including continued content locality in the event of
failover to a neighbor node).

One might imagine providing path locality by adding
routing constraints to messages, so that messages are not
allowed to be forwarded outside of a given organizational
boundary. Unfortunately, such constraints would also pre-
vent routing from being consistent. That is, messages
sent to the same destination ID from two different source
nodes would not be guaranteed to end up at the same des-
tination node.

An alternative to virtualizing node names would be to
lengthen node IDs and partition them into separate, con-
catenated parts. For example, in a two-part scheme, node
names would consist of two concatenated IDs and content
names would also consist of two parts: a numeric ID value
and a string name. The numeric ID would map to the first
part of an overlay ID while the hash of the string name
would map to the second part. The result is a static form
of constrained load balancing: The numeric ID of a data
object’s name selects the DHT formed by all nodes shar-
ing the same numeric ID and the string name determines
which node to map to within the selected DHT. Further-
more, combining this approach with node virtualization
provides explicit content placement.

This approach comes close to providing the same lo-
cality semantics as SkipNet: it provides explicit content
placement, a static form of constrained load balancing,
and path locality within each numeric ID domain. The
major drawbacks of this approach are that the granularity
of the hierarchy is frozen at the time of overlay creation
by human decision; every layer of the hierarchy incurs an
additional cost in the length of the numeric ID and in the
size of the routing table that must be maintained; and the
path locality guarantee is only with respect to boundaries
in the static hierarchy.

6.3 Multiple Overlay Networks
Instead of using a single DHT-based overlay one

might consider employing multiple overlays with differ-
ent memberships. These multiple overlays can be ar-
ranged either as a static set of networks reflecting the de-
sired locality requirements or as a dynamic set of overlays
reflecting the participation of nodes in particular applica-
tions. In the static overlay case, a node could belong to
just one of several alternative overlays, or belong to mul-
tiple overlays at different levels of a hierarchy.

In the case where each node belongs to only one of sev-
eral overlays, one could imagine accessing other overlays
by gateways. These gateways need not be a single point
of failure if we give the backup gateway an appropriate
neighboring numeric ID. One could either route directly
to well-known gateways, or the gateways could organize
an overlay network amongst themselves (imagine a over-
lay network of overlay networks). In either case, inter-
domain routing requires serial traversal of the domain hi-
erarchy, resulting in potentially large latencies when rout-
ing between domains.

If instead each node belonged to multiple overlays
(for example, to a global overlay, an organization-wide
overlay, and perhaps also a divisional or building-wide
overlay), the associated overhead would correspondingly
grow. Explicit content placement would still require
extension of the overlay design. Furthermore, in this
scheme, access to data that is constrained load balanced
within a single overlay is not readily accessible to clients
outside that overlay network, although it could be made
so by introducing gateways in this design.

A final design alternative involving multiple overlays
is to define an overlay network per application. This lets
applications dynamically define the set of participating
nodes, and thus ensure that application specific messages
stay within this overlay. It does not provide any notion
of locality within a subset of the overlay, and therefore
fails to provide much of SkipNet’s functionality, such as
constrained load balancing.

In contrast, SkipNet provides explicit content place-
ment, allows clients to dynamically define new DHTs
over any name prefix scope, and guarantees path locality
within any shared name prefix, all within a single shared
infrastructure.

7 Experimental Evaluation
To understand and evaluate SkipNet’s design and per-

formance, we used a simple packet-level, discrete event
simulator that counts the number of packets sent over a
physical link and assigns either a unit hop count or a spec-
ified delay for each link, depending upon the topology
used. It does not model either queuing delay or packet
losses because modelling these would prevent simulation
of large networks.

Our simulator implements three overlay network de-
signs: Pastry, Chord, and SkipNet. The Pastry implemen-
tation is described in [23]. Our Chord implementation is

based on the algorithm in [27], adapted to operate within
our simulator. For our simulations, we run the Chord sta-
bilization algorithm until no finger pointers need updat-
ing after all nodes have joined. We use two different im-
plementations of SkipNet: a “basic” implementation that
uses only the R-Table with duplicate pointer elimination,
and a “full” implementation that includes the P-Table and
C-Table as well. The full SkipNet implementation uses a
sparse R-Table, and a dense P-Table with density param-
eter k = 8. For full SkipNet, we run two rounds of sta-
bilization for P-Table entries before each experiment. In
addition to the information provided below, we provide a
complete specification of all the configuration parameters
used in our simulation runs in [12].

All our experiments were run both on a Mercator
topology [28] and a GT-ITM topology [31]. The Merca-
tor topology has 102,639 nodes and 142,303 links. Each
node is assigned to one of 2,662 Autonomous Systems
(ASs). There are 4,851 links between ASs in the topol-
ogy. The Mercator topology assigns a unit hop count for
each link. All figures shown in this section are for the
Mercator topology. The experiments based on the GT-
ITM topology produced similar results.

7.1 Methodology

We measured the performance characteristics of
lookups using the following evaluation criteria:

Relative Delay Penalty (RDP): The ratio of the la-
tency of the overlay network path between two nodes to
the latency of the IP-level path between them.

Physical network hops: The absolute length of the
overlay path between two nodes, measured in IP-level
hops.

Number of failed lookups: The number of unsuccess-
ful lookup requests in the presence of failures.

We also model the presence of organizations within
the overlay network; each participating node belongs to
a single organization. The number of organizations is
a parameter to the experiment, as is the total number of
nodes in the overlay. For each experiment, the total num-
ber of client lookups is ten times the number of nodes in
the overlay.

The format of the names of participating nodes is org-
name/node-name. The format of data object names is org-
name/node-name/random-obj-name. Therefore we assume
that the “owner” of a particular data object will name it
with the owner node’s name followed by a node-local ob-
ject name. In SkipNet, this results in a data object being
placed on the owner’s node; in Chord and Pastry, the ob-
ject is placed on a node corresponding to the SHA-1 hash
of the object’s name. For constrained load balancing ex-
periments we use data object names that include the ‘!’
delimiter following the name of the organization.

We model organization sizes two ways: a uniform
model and a Zipf-like model. In the Zipf-like model, the
size of an organization is determined according to a dis-
tribution governed by x−1.25 + 0.5 and normalized to the
total number of overlay nodes in the system. All other
Zipf-like distributions mentioned in this section are de-
fined in a similar manner.

We model three kinds of node locality: uniform, clus-
tered, and Zipf-clustered. In the uniform model, nodes
are uniformly spread throughout the overlay. In the clus-
tered model, the nodes of an organization are uniformly
spread throughout a single randomly chosen autonomous
system. We ensure that the selected AS has at least 1/10-
th as many core router nodes as overlay nodes. For Zipf-
clustered, we place organizations within ASes, as before.
However, the nodes of an organization are spread through-
out its AS as follows: A “root” physical node is randomly
placed within the AS and all overlay nodes are placed rel-
ative to this root, at distances modelled by a Zipf-like
distribution. In this configuration most of the overlay
nodes of an organization will be closely clustered together
within their AS. This configuration is especially relevant
to the Mercator topology, in which some ASes span large
portions of the entire topology.

Data object names, and therefore data placement, are
modelled similarly. In a uniform model, data names are
generated by randomly selecting an organization and then
a random node within that organization. In a clustered
model, data names are generated by selecting an orga-
nization according to a Zipf-like distribution and then a
random member node within that organization. For Zipf-
clustered, data names are generated by randomly select-
ing an organization according to a Zipf-like distribution
and then selecting a member node according to a Zipf-
like distribution of its distance from the “root” node of
the organization. Note that for Chord and Pastry, but not
SkipNet, hashing spreads data objects uniformly among
all overlay nodes in all of these three models.

For SkipNet, the actual node names used in our simula-
tions may impact performance, so we used realistic distri-
butions for both host names and organization names. Our
distribution of organization names was derived from a list
of 5,608 unique organizations which had at least one peer
participating in Gnutella in March 2001 [26]. The host
name distribution was obtained from a list of 177,000 in-
ternal host names in use at Microsoft Corporation.

We model locality of data access by specifying what
fraction of all data lookups will be forced to request data
local to the requestor’s organization. Finally, we model
system behavior under Internet-like failures and study
document availability within a disconnected organization.
We simulate domain isolation by failing the links connect-
ing the organization’s AS to the rest of the network.

Each experiment is run ten times, with different ran-
dom seeds, and the mean values are presented. SkipNet
uses 128-bit numeric IDs and a leaf set of 16 nodes. Chord
and Pastry use their default configurations [27, 23].

0

1

2

3

4

5

6

7

8

9

1,000 10,000 100,000
Number of Nodes

R
el

at
iv

e
D

el
ay

 P
en

al
ty

 (
R

D
P

)
Chord
Pastry
Basic SkipNet
Full SkipNet

Figure 8. RDP as a function of network size. Configu-
ration: 1000 organizations with Zipf-like sizes, nodes and
data names are Zipf-clustered.

Chord Basic SkipNet Full SkipNet Pastry
16.3 41.7 102.2 63.2

Table 1. Average number of unique routing entries per
node in an overlay with 216 nodes.

7.2 Basic Routing Costs

To understand SkipNet’s routing performance we sim-
ulated overlay networks varying the number of nodes
from 1,024 to 65,536. We ran experiments with 10, 100,
and 1000 organizations and with all the permutations ob-
tainable for organization size distribution, node place-
ment, and data placement. The intent was to see how
RDP behaves under various configurations. We were es-
pecially curious to see whether the non-uniform distribu-
tion of data object names would adversely affect the per-
formance of SkipNet lookups, as compared to Chord and
Pastry.

Figure 8 presents the RDPs measured for both imple-
mentations of SkipNet, as well as Chord and Pastry. Ta-
ble 1 shows the average number of unique routing table
entries per node in an overlay with 216 nodes. All other
configurations, including the completely uniform ones,
exhibited similar results to those shown here.

Our conclusion is that basic SkipNet performs simi-
larly to Chord and full SkipNet performs similarly to Pas-
try. This is not surprising since both basic SkipNet and
Chord do not support network proximity-aware routing
whereas full SkipNet and Pastry do. Since all our other
configurations produced similar results, we conclude that
SkipNet’s performance is not adversely affected by non-
uniform distributions of names.

7.3 Exploiting Locality of Placement

RDP only measures performance relative to IP-based
routing. However, one of SkipNet’s key benefits is that
it enables localized placement of data. Figure 9 shows
the average number of physical network hops for lookup
requests. The x-axis indicates what fraction of lookups
were forced to be to local data (i.e., the data object names

0

20

40

60

80

100

120

0% 20% 40% 60% 80% 100%
Fraction of Forced Local Lookups

P
hy

si
ca

l N
et

w
or

k
H

op
s

Chord
Pastry
Basic SkipNet
Full SkipNet

Figure 9. Absolute latency (in network hops) for lookups
as a function of data access locality (percentage of
lookups forced to be within a single organization). Con-
figuration: 216 nodes, 100 organizations with Zipf-like
sizes, nodes and data names are Zipf-clustered.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Fraction of Forced Local Lookups

P
er

ce
nt

ag
e

of
 F

ai
le

d
Lo

ok
up

s

Chord

Pastry

Basic SkipNet

Full SkipNet

Chord Pastry

Basic SkipNet

Full SkipNet

Figure 10. Number of failed lookup requests as a func-
tion of data access locality (percentage of lookup requests
forced to be within a single organization) for a discon-
nected organization. Configuration: 216 nodes, 100 or-
ganizations with Zipf-like sizes, nodes and data names are
Zipf-clustered.

that were looked up were from the same organization as
the requesting client). The y-axis shows the number of
physical network hops for lookup requests.

As expected, both Chord and Pastry are oblivious to
the locality of data references since they diffuse data
throughout their overlay network. On the other hand,
both versions of SkipNet show significant performance
improvements as the locality of data references increases.
It should be noted that Figure 9 actually understates the
benefits gained by SkipNet because, in our Mercator
topology, inter-domain links have the same cost as intra-
domain links. In an equivalent experiment run on the GT-
ITM topology, SkipNet end-to-end lookup latencies were
over a factor of seven less than Pastry’s for 100% local
lookups.

0

1

2

3

4

5

6

7

8

100 1,000 10,000 100,000
Number of Nodes

R
el

at
iv

e
D

el
ay

 P
en

al
ty

 (
R

D
P

)
Pastry

Basic CLB

Full CLB

Figure 11. RDP of lookups for data that is constrained
load balanced (CLB) as a function of network size. Con-
figuration: 100 organizations with Zipf-like sizes, nodes
and data names are Zipf-clustered.

7.4 Fault Tolerance

Content locality also improves fault tolerance. Fig-
ure 10 shows the number of lookups that failed when an
organization was disconnected from the rest of the net-
work.

This (common) Internet-like failure had catastrophic
consequences for Chord and Pastry. The size of the iso-
lated organization in this experiment was roughly 15% of
the total nodes in the system. Consequently, Chord and
Pastry will both place roughly 85% of the organization’s
data on nodes outside the organization. Furthermore, they
must also attempt to route lookup requests with 85% of
the overlay network’s nodes effectively failed (from the
disconnected organization’s point-of-view). At this level
of failures, routing is effectively impossible. The net re-
sult is a failed lookups ratio of very close to 100%.

In contrast, both versions of SkipNet do better the more
locality of reference there is. When no lookups are forced
to be local, SkipNet fails to access the 85% of data that
is non-local to the organization. As the percentage of lo-
cal lookups is increased to 100%, the percentage of failed
lookups goes to 0.

7.5 Constrained Load Balancing

Figure 11 explores the routing performance of two dif-
ferent CLB configurations, and compares their perfor-
mance with Pastry. For each system, all lookup traffic
is organization-local data. The organization sizes as well
as node and data placement are clustered with a Zipf-like
distribution. The Basic CLB configuration uses only the
R-Table described in Section 3, whereas Full CLB makes
use of the R-Table and the C-Table, as described in Sec-
tion 5.4.

The Full CLB curve shows a significant performance
improvement over Basic CLB, justifying the cost of main-
taining the extra routing tables. However, even with the
additional tables, the Full CLB performance trails Pastry’s
performance. We plan to investigate further techniques to
reduce the latency of CLB.

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16
Density Parameter K

R
el

at
iv

e
D

el
ay

 P
en

al
ty

 (
R

D
P

)

Full SkipNet

49.7

49.5

54.1

64.5 74.0
95.6

116.8

Figure 12. RDP for Full SkipNet as a function of the den-
sity configuration parameter k. The labels next to each
point represent the average number of unique pointers per
node. Configuration: 216 nodes, 1000 organizations with
Zipf-like sizes, nodes and data names are Zipf-clustered.

7.6 Network Proximity
Figure 12 shows the performance of SkipNet routing

using the P-Table. The x-axis varies the configuration
parameter k which controls the density of P-Table point-
ers. The y-axis shows the routing performance in terms
of RDP, and each data point is labelled with the aver-
age number of unique pointers per node. Note that the
C-Table was not enabled so the pointers are from the R-
table, P-Table and leaf set. Figure 12 shows that for small
values of k, increasing k yields a large RDP improvement
with a small increase in the number of pointers. As k
grows, we see minimal improvement in RDP but signifi-
cantly more pointers. This suggests that choosing k = 8
provides most of the RDP benefit with a reasonable num-
ber of pointers.

We also analyzed the sensitivity of P-Table perfor-
mance to the choice of the initial seed node. We compared
the performance when choosing a seed node at random
with choosing the seed as the closest node in the system.
Our results show virtually identical performance, which
indicates that the P-Table join mechanism is effective at
locating a nearby seed.

8 Conclusion
To become broadly acceptable application infrastruc-

ture, peer-to-peer systems need to support both content
and path locality: the ability to control where data is
stored and to guarantee that routing paths remain lo-
cal within an administrative domain whenever possible.
These properties provide a number of advantages, in-
cluding improved availability, performance, manageabil-
ity, and security. To our knowledge, SkipNet is the first
peer-to-peer system design that achieves both content and
routing path locality. SkipNet achieves this without sacri-
ficing the performance goals of previous peer-to-peer sys-
tems: Nodes maintain a logarithmic amount of state and
operations require a logarithmic number of message hops.

SkipNet provides content locality at any desired degree
of granularity. Constrained load balancing encompasses

placing data on a particular node, as well as traditional
DHT functionality, and any intermediate level of granu-
larity. This granularity is only limited by the hierarchy
encoded in nodes’ name IDs.

Clustering node names by organization allows SkipNet
to perform gracefully in the face of a common type of
Internet failure: When an organization loses connectivity
to the rest of the network, SkipNet fragments into two
segments that are still able to route efficiently internally.
With uncorrelated and independent node failures, SkipNet
behaves comparably to other peer-to-peer systems.

Our evaluation has demonstrated that SkipNet’s per-
formance is similar to other peer-to-peer systems such as
Chord and Pastry under uniform access patterns. Under
access patterns where intra-organizational traffic predom-
inates, SkipNet performs better. Our experiments show
that SkipNet is significantly more resilient to organiza-
tional network partitions than other peer-to-peer systems.

In future work, we plan to deploy SkipNet across a
testbed of 2000 machines emulating a WAN. This deploy-
ment should further our understanding of SkipNet’s be-
havior in the face of dynamic node joins and departures,
network congestion, and other real-world scenarios. We
also plan to evaluate SkipNet as infrastructure for imple-
menting a scalable event notification service [2].

Acknowledgements
We thank John Dunagan for his substantial help with

both the analysis of SkipNet and with crafting the text of
this paper. We thank Antony Rowstron, Miguel Castro,
and Anne-Marie Kermarrec for allowing us to use their
Pastry implementation and network simulator. We thank
Atul Adya, who independently observed that Chord’s
structure suggested the possibility of a Skip List-based
distributed data structure, and provided helpful feedback
on drafts of this paper. Finally, we thank the anonymous
conference referees for their insightful comments.

References
[1] J. Aspnes and G. Shah. Skip Graphs. In Proceedings of the 14th

Annual ACM-SIAM Symposium on Discrete Algorithms, Jan. 2003.
[2] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achieving a

global event notification service. In HotOS VIII, May 2001.
[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.

Security for peer-to-peer routing overlays. In Proceedings of the
Fifth OSDI, Dec. 2002.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-
aware routing in structured peer-to-peer overlay networks. Tech-
nical Report MSR-TR-2002-82, Microsoft Research, 2002.

[5] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system mul-
ticast. In ACM SIGMETRICS 2000, pages 1–12, June 2000.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System.
In Workshop on Design Issues in Anonymity and Unobservability,
pages 311–320, July 2000.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In 18th Symposium on
Operating Systems Principles, Oct. 2001.

[8] J. R. Douceur. The Sybil Attack. In First International Workshop
on Peer-to-Peer Systems (IPTPS ’02), Mar. 2002.

[9] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. In Proceedings of the 22nd ICDCS, July 2002.

[10] Gnutella. http://www.gnutelliums.com/.
[11] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, dis-

tributed data structures for Internet service construction. In Pro-
ceedings of the Fourth OSDI, Oct. 2000.

[12] N. J. A. Harvey, J. Dunagan, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. SkipNet: A Scalable Overlay Network with Prac-
tical Locality Properties. Technical Report MSR-TR-2002-92, Mi-
crosoft Research, 2002.

[13] N. J. A. Harvey, M. B. Jones, M. Theimer, and A. Wolman. Ef-
ficient Recovery From Organizational Disconnects in SkipNet. In
Second International Workshop on Peer-to-Peer Systems (IPTPS
’03), Feb. 2003.

[14] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized,
peer-to-peer web cache. In Proceedings of the 21st Annual PODC,
July 2002.

[15] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigraphy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the 29th Annual STOC, May 1997.

[16] P. Keleher, S. Bhattacharjee, and B. Silaghi. Are Virtualized Over-
lay Networks Too Much of a Good Thing? In First International
Workshop on Peer-to-Peer Systems (IPTPS ’02), Mar. 2002.

[17] C. Labovitz and A. Ahuja. Experimental Study of Internet Stability
and Wide-Area Backbone Failures. In Fault-Tolerant Computing
Symposium (FTCS), June 1999.

[18] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In Proceedings of the 21st
Annual PODC, July 2002.

[19] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do In-
ternet services fail, and what can be done about it? In Proceedings
of 4th USITS, Mar. 2003.

[20] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced
Trees. In Workshop on Algorithms and Data Structures, 1989.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of ACM
SIGCOMM, Aug. 2001.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-
level Multicast using Content-Addressable Networks. In Proceed-
ings of the Third International Workshop on Networked Group
Communication, Nov. 2001.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
International Conference on Distributed Systems Platforms (Mid-
dleware), pages 329–350, Heidelberg, Germany, Nov. 2001.

[24] A. Rowstron and P. Druschel. Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility. In 18th
Symposium on Operating Systems Principles, Oct. 2001.

[25] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification infrastruc-
ture. In Third International Workshop on Networked Group Com-
munications, Nov 2001.

[26] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings of Multi-
media Computing and Networking, San Jose, CA, USA, Jan. 2002.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-To-Peer Lookup Service for Internet
Applications. In Proceedings of ACM SIGCOMM, Aug. 2001.

[28] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. The
Impact of Routing Policy on Internet Paths. In Proceedings of
IEEE INFOCOM 2001, April 2001.

[29] M. Theimer and M. B. Jones. Overlook: Scalable Name Service
on an Overlay Network. In Proceedings of the 22nd ICDCS, July
2002.

[30] A. Vahdat, J. Chase, R. Braynard, D. Kostic, and A. Rodriguez.
Self-Organizing Subsets: From Each According to His Abilities,
To Each According to His Needs. In First International Workshop
on Peer-to-Peer Systems (IPTPS ’02), March 2002.

[31] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to Model
an Internetwork. In Proceedings of IEEE Infocom ’96, April 1996.

[32] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-Resilient Wide-area Location and Routing.
Technical Report UCB//CSD-01-1141, UC Berkeley, April 2001.

