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Abstract

Performance-enhancing mechanisms in the World Wide
Web primarily exploit repeated requests to Web docu-
ments by multiple clients. However, little is known about
patterns of shared document access, particularly from di-
verse client populations. The principal goal of this pa-
per is to examine the sharing of Web documents from an
organizationalpoint of view. An organizational analy-
sis of sharing is important, because caching is often per-
formed on an organizational basis; i.e., proxies are typi-
cally placed in front of large and small companies, uni-
versities, departments, and so on. Unfortunately, simul-
taneous multi-organizational traces do not currently exist
and are difficult to obtain in practice.

The goal of this paper is to explore the extent of doc-
ument sharing (1) among clients within single organiza-
tions, and (2) among clients across different organiza-
tions. To perform the study, we use a large university as
a model of a diverse collection of organizations. Within
our university, we have traced all external Web requests
and responses, anonymizing the data but preserving or-
ganizational membership information. This permits us
to analyze both inter- and intra-organization document
sharing and to test whether organization membership is
significant. As well, we characterize a number of param-
eters of our data, including basic object characteristics,
object cacheability, and server distributions.

1 Introduction

The need to understand Web behavior and performance
has led to a large number of studies, aimed in partic-
ular at classifying Web documentcharacteristics[11,
12, 13, 16, 21]. In contrast, the principal goal of this
study is to evaluate documentsharing behavioron the
Web, bothwithin organizations andbetweenorganiza-
tions. By document sharing, we mean access to the same
Web documents by different clients. Sharing behavior
has obvious implications for performance, particularly
with respect to the effectiveness of proxy caching (e.g.,
[9, 14, 17, 20, 27]). Proxy caches are often located at or-
ganizational boundaries and improve performance only
if many documents are shared by many clients. There-
fore, an understanding of sharing gives us added insight

into potential performance-enhancing mechanisms and
alternative caching structures.

An analysis of document sharing within an organiza-
tion is straightforward and can help predict the benefits
of an organizational proxy cache [13]. Studying shar-
ing across multiple organizations is much more diffi-
cult, however. Tracing of the entire Web is obviously
not achievable, but even simultaneous traces of multi-
ple organizations do not currently exist. In addition, the
requirement of most organizations for anonymization of
URLs and IP addresses, along with the different dates of
data capture, makes correlation of separate traces chal-
lenging, if not impossible.

In this study, we use The University of Washing-
ton (UW) as a basis for modeling intra- and inter-
organizational Web-object sharing. The UW is the
largest university in the northwest part of the U.S., with a
population of over 50,000 people, including 35,000 stu-
dents, 10,000 full-time staff, and 5,000 faculty. The uni-
versity has a large communications infrastructure, con-
sisting of thousands of computers connected via both
high-speed networks and modems. Together, this com-
munity generates a workload of about 17,400 university-
external Web requests per minute at peak periods.

As with other universities, UW is organized into many
colleges, departments, and programs, each with its own
disparate administrative, academic, or research focus.
For example, the UW includes museums of art and natu-
ral history, medical and dental schools, libraries, admin-
istrative organizations, and of course academic depart-
ments, such as music, Scandinavian languages, and com-
puter science. What do such diverse organizations have
in common with respect to their Web access requests?
To answer this question, we have traced all UW-external
Web requests; we anonymize the data in such a way as to
identify requests (and associated responses) with the 170
or so independent organizations from which they were is-
sued. This permits us to study organization-specific doc-
ument access and sharing behavior. We have collected
a number of traces during the period from October 1998
through the present. In general, all of our traces show
the same basic patterns. The results in this paper are
based on a representative one-week trace taken in mid-
May 1999, and therefore show the very latest character-



istics of modern Web traffic.
The paper is organized as follows. The next section

provides a brief description of related work. In Section 3
we describe our trace-capture methodology. Section 4
contains a high-level description of the workload we
traced. Section 5 focuses on organization-based statis-
tics and also provides inter- and intra-organization shar-
ing analysis. In Section 6 we discuss cacheability of doc-
uments, and reasons why documents are not cacheable.
Finally, Section 7 summarizes our study and its results.

2 Previous Work

Numerous recent studies of Web traffic have been per-
formed. These studies include analyses of Web access
traces from the perspective of browsers [11, 21], prox-
ies [2, 4, 6, 10, 12, 15, 18, 19, 24], and servers [1, 3, 23].
The earlier tracing studies were rather limited in request
rate, number of requests, and diversity of population.
The most recent tracing studies have been larger and gen-
erally more diverse. In addition to static analysis, some
studies have also used trace-driven cache simulation to
characterize the locality and sharing properties of these
very large traces [2, 5, 13, 15, 16, 19], and to study the ef-
fects of cookies, aborted connections, and persistent con-
nections on the performance of proxy caching [5, 15].

In this paper, we expand on these previous research ef-
forts. Our focus is on sharing and cacheability; however
we can also compare our current HTTP traffic character-
istics to earlier studies, showing how the Web workload
has changed. Our work is based on the most recent data
from a large diverse population. More important, we pre-
serve enough information so that we can analyze requests
with respect to inter-organization and intra-organization
document sharing.

3 Measurement Methodology

We usepassive network monitoringto collect our traces
of Web traffic traveling between the University of Wash-
ington and the rest of the Internet. UW connects to its
Internet Service Providers via two border routers; one
router handles primarily outbound traffic and the other
inbound traffic. These two routers are fully connected
to four 100-megabit Ethernet switches distributed across
the campus. Each switch has a monitoring port that is
used to send copies of the incoming and outgoing pack-
ets to our monitoring host, which analyzes the packets
and produces a trace.

We designed and implemented the tracing software
used to produce that data in this study. Our user-level
tracing software runs on a 500 MHz Digital Alpha 21164
workstation running Digital Unix V4.0. This software in-
stalls a kernel packet filter [22] to deliver all TCP pack-

ets from the network interfaces to the user-level moni-
toring process, which analyzes the packets and produces
a trace. The user-level process consists of three layers:
TCP segment analysis, HTTP header processing, and
logging. The TCP segment analysis layer classifies indi-
vidual TCP packets into TCP connections and identifies
the first data segments in each connection. The first data
segment is used to decide whether or not the connection
is an HTTP connection. This technique allows us to see
all HTTP traffic (not just port 80). Once a connection has
been classified as an HTTP connection, we monitor fur-
ther segments on that connection so that we can locate all
the relevant HTTP headers when persistent connections
are in use. The HTTP header processing layer is respon-
sible for parsing the HTTP headers extracted from TCP
data segments in the HTTP connection. Once the headers
have been parsed, we extract the fields to be saved and
anonymize those fields that contain sensitive informa-
tion. We also anonymize the IP addresses here, and then
pass that information to the logging layer. The logging
layer takes the information from the HTTP parser, con-
verts it to a compact binary representation, compresses
it, and writes it to disk. We maintain packet loss coun-
ters on the monitoring host at the device driver level, at
the packet filter level, and at user level. During the May
trace, we measured the packet loss at .0007%. It is also
possible for the switches to drop packets, and we cannot
detect packet loss at the these switches, but the UW net-
work administrators who manage the switches tell us that
they have significant excess capacity.

We use an anonymization approach that protects pri-
vacy but preserves some address locality information.
For internal addresses, we classify the IP address based
on its “organization” membership. An organization is
a set of university IP addresses that forms an administra-
tive entity; an organization may include multiple subnets.
For instance, all machines in the Computer Science De-
partment are in a single organization, machines in the
Department of Dentistry are in another, and machines
connected to the campus Museum of Natural History are
in yet another. We constructed the mapping from subnets
to organization identifiers based on information obtained
from the campus network administrators. Once the orga-
nization identifiers are assigned, both the IP address and
the organization identifier are anonymized. Furthermore,
some bits of information in the IP address are destroyed
before anonymization to make the anonymization more
secure. If the hash function or key is compromised, no
transaction can be associated with a client address with
absolute certainty.

For external addresses, we anonymize each octet of
the server IP address separately. For our purposes, two
servers are near each other if they share most or all of the
Internet path between them and the university. We con-
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Figure 1: Histogram of the top 15 content types by count and size.

sider two servers to be on the same subnet when the first
three octets of their IP addresses match. Given the use
of classless routing in the Internet, this scheme will not
provide 100% accuracy, but for large organizations we
expect that this assumption will be overly conservative
rather than overly aggressive.

Although our tracing software records all HTTP re-
quests and responses flowing both in and out of UW,
the data presented in this paper is filtered to only look
at HTTP requests generated by clients inside UW, and
the corresponding HTTP responses generated by servers
outside of UW. All of our results are based on the entire
trace collected from Friday May 7th through Friday May
14th, 1999, except for the organization-based sharing re-
sults in Section 5, which are from a single day (Tuesday)
of our trace (the limitation is due to the memory require-
ments of the sharing analysis).

4 High-Level Data Characteristics

Table 1 shows the basic data characteristics. As the table
shows, our trace software saw the transfer of 677 giga-
bytes of data in response packets, requested from about
23,000 client addresses, and returned from 244,000
servers. It is interesting that, compared to the commonly-
used 1996 DEC trace (analyzed, e.g., in [13]), which had
a similar client population, we saw four times as many
requests in one week as DEC saw in 3 weeks. These re-
quests and corresponding response and close events fol-
low the typical diurnal cycle, with a minimum of 460

requests per minute (at 5 AM) and a peak of 17,400 re-
quests per minute (at 3 PM).

Figures 1a and 1b present a histogram of the top con-
tent types by object count and bytes transmitted, respec-
tively. By count, the top four are image/gif, text/html,
No Content Type, and image/jpeg, with all the rest of
the content types at significantly lower numbers. The
No Content Type traffic, which accounts for 18% of the
responses, consists primarily of short control messages.
The largest percentage of bytes transferred is accounted
for by text/html with 25%, though the sum of the im-
age/gif (19%) and image/jpeg (21%) types accounts for
40% of the bytes transferred. The remaining content
types account for decreasing numbers of bytes with a
heavy-tailed distribution.

Another type that accounts for significant traffic,
which is not readily apparent from the table, is multime-
dia content (audio and video). The sum of all 59 different
audio and video content types that we observed during
the May trace adds up to 14% of all bytes transferred. In

HTTP Transactions (Requests)82.8 million
Objects 18.4 million
Clients 22,984
Servers 244,211
Total Bytes 677 GB
Average requests/minute 8,200
Peak requests/minute 17,400

Table 1: Overall statistics for the one-week trace.
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Figure 2: Requests broken down into initial, duplicate, and cacheable duplicate requests over time.

addition, there is a significant amount of streaming mul-
timedia content that is delivered through an out-of-band
channel between the audio/video player and the server.

In a preliminary attempt to view some of this out-of-
band multimedia traffic, we extended our tracing soft-
ware to analyze connections made by the Real Networks
audio/video player, examining port 7070 traffic. Newer
versions of the Real Networks player use the RTSP pro-
tocol, which we do not handle. The Real Networks
player sets up a TCP control connection on port 7070,
and then transfers the data on UDP port 7070. Our trace
software only collects TCP segments, so we analyze the
control connection to determine how much data is being
transferred. When the control connection is shut down,
a “statistics” packet is transmitted that contains the aver-
age bandwidth delivered (in bits per second) as measured
by the client for the completed connection. We take that
that bit-rate and multiply it by the connection duration
time to estimate the size of the content transferred. Some
of the control connections do not transmit the statistics
packet, in which case we cannot make an estimate.

During the week of the May trace, we observed 55000
connections, of which approximately 40% had statis-
tics packets. For those 40%, we calculated that 28
GB of Real-Audio and Real-Video data were transferred
(which would scale to 10% of the amount of HTTP data
transferred if the other 60% of connections have similar
characteristics). Furthermore, the Real-Audio and Real-
Video objects themselves are quite large, with an average
size of just under a megabyte. When we sum up all the
different kinds of multimedia content, we see that from
18% to 24% of Web related traffic coming in to the Uni-
versity is multimedia content, and this is a lower bound
since we know that we’re missing RTSP traffic at the very

least. We believe that the large quantity of audio and
video is signaling a new trend; e.g., in the data collected
for studies reported in [12] and [16], audio traffic does
not appear.

We were also curious about the HTTP protocol ver-
sions currently in use. The majority of requests in our
trace (53%) are made using HTTP 1.0, but the major-
ity of responses use HTTP 1.1 (69%). In terms of bytes
transferred, the majority of bytes (75%) are returned
from HTTP 1.1 servers.

These statistics simply serve to provide some back-
ground about the general nature of the trace data, in order
to set the context for the analysis in the next two sections.

5 Analysis of Document Sharing

This section presents and analyzes our trace data, focus-
ing on document sharing. As previously stated, our in-
tention is to use the university organizations as a simple
model of independent organizations in the Internet. Our
goal is to answer several key questions with respect to
Web-document sharing, for example:

1. How much object sharing occurs between different
organizations?

2. What types of objects are shared?
3. How are objects shared in time?
4. Is membership in an organization a predictor of

sharing behavior?
5. Are members of organizations more similar to each

other than to members of different organizations,
or do all clients behave more-or-less identically in
their request behavior?

Figure 2 plots total Web requests per 5 minute period
over the one-week trace period. The shading of the graph



divides the curve into three areas: the darkest portion
shows the fraction of requests that are initial (first) re-
quests to objects, while the medium grey portion shows
the subset that are duplicate (repeated) requests to doc-
uments. A request is considered a duplicate if it is to a
document previously requested in the trace by any client.
The lightest grey color shows those requests that are both
duplicate and cacheable, as we will discuss later.

Overall, the data shows that about 75% of requests are
to objects previously requested in the trace. This matches
fairly closely the results of Duska et al. on several large
organizational traces [13]. The percentage of shared re-
quests rises very slowly over time, as one might expect.
From our one-week trace, we cannot yet see the peak;
however, this analysis does not consider document time-
outs or replacements, therefore the 75% is optimistic if
used as a basis for prediction of cache behavior. Fur-
thermore, we cannot tell from the figure how many of
the requests to a shared object were duplicate requests
from the same client; overall, we found that about 60%
of the requests to shared documents were first requests by
a client to those documents; 40% were repeated requests
by the same client.

A key component of our data is the encoding of the
organization number, which allows us to identify each
client as belonging to one of the 170 active university or-
ganizations. These organizations include academic and
administrative departments and programs, dormitories,
and the university-wide modem pool. Figures 3a and 3b
show the organization size, the request rate, and num-
ber of objects accessed by each organization. There are
several very large organizations, with most somewhat
smaller. The largest organization has 919 “anonymized”
clients, the second largest organization is the modem
pool with 759 clients, and the third largest organization
has 626 clients.1 The top 20 organizations all have more
than 100 clients, as shown by the labels in Figure 5. Be-
cause of the way that client IP addresses are anonymized,
we cannot uniquely identify an individual client, i.e.,
each anonymized client address could correspond to up
to 4 separate clients. For this trace the ratio of “real”
clients to “anonymized” clients measured by the low lev-
els of our trace software is 1.67; therefore, our 13,701
anonymized clients represent 22,984 true clients.

Using the organization data, we can analyze the
amount of object sharing that occurs both within and be-
tween organizations.

Figure 4a shows intra-organization (local) sharing
from the perspective of both objects and requests. The
black line shows the percentage of all objects accessed
by each organization that arelocally-sharedobjects, i.e.,
accessed by more than one organization member. The

1The modem pool is somewhat special, because multiple clients can
login through a single IP address in the pool.

light grey line shows the percentage of all organization
requeststhat are to these locally-shared objects. The
organizations are ordered by decreasing locally-shared
object percentage. From our data on intra-organization
sharing we can make the following observations:

� Only a small percentage (4.8% on average) of
the objects accessed within an organization are
shared by multiple members of the organization (the
smooth black line).

� However, a much larger percentage ofrequests
(16.4% on average) are to locally-shared objects
(the light grey line).

� The average number of requests per locally-shared
object is 4.0 – higher than the minimal 2 requests
required for an object to be considered shared.

� Each locally-shared object is requested by two
clients on average in each organization.

Figure 4b shows the inter-organization (global) shar-
ing activity. Here the black line shows the percentage of
all objects accessed by each organization that were also
accessed by at least oneotherorganization; we call such
objectsglobally-sharedobjects. Similarly, the light grey
line shows the percentage of allrequestsby an organi-
zation to globally-shared objects. The organizations are
ordered by decreasing globally-shared object percentage.
From our data on inter-organization sharing we can make
the following observations:

� There is more sharing with other organizations than
within the organization; the fraction of globally-
shared objects and requests in Figure 4b is much
higher than the locally-shared objects and requests
in Figure 4a. This is not surprising, because the
combined client population of all of the organiza-
tions is significantly larger than any one organiza-
tion alone. As a result, there is a much greater op-
portunity for the clients in one organization to share
with clients from any of the other organizations.

� For 65% of the organizations, more than half of the
objects referenced are globally-shared objects (the
smooth black line).

� For 94% of the organizations, more than half of
the requests are to globally-shared objects, and for
10% of the organizations 75% of the requests are to
globally-shared objects (the light grey line).

� However, globally-shared objects are not requested
frequently by each organization. On average,
each organization makes 1.5 requests to a globally-
shared object.



0 20 40 60 80 100 120 140 160

Organization Number

0

200

400

600

800

C
lie

n
ts

(a) Clients Per Organization

0 20 40 60 80 100 120 140 160

Organization Number

1

10

100

1000

10000

100000

1000000

C
o

u
n

t 
(l

o
g

)
(b) Objects and Requests Per Organization

Objects
Requests

Figure 3: Distribution of clients, objects, and requests in organizations. The object and request graph is sorted by the
number of objects in an organization. Note that the y-axis of (b) uses a log scale.

0 20 40 60 80 100 120 140 160

Organization Number

0

20

40

60

80

100

%
 T

o
ta

l

(a) Intra-Organization Sharing (Local)

Locally-Shared Objects
Locally-Shared Requests

0 20 40 60 80 100 120 140 160

Organization Number

0

20

40

60

80

100

%
 T

o
ta

l

(b) Inter-Organization Sharing (Global)

Globally-Shared Objects
Globally-Shared Requests

Figure 4: The left graph shows the fraction of objects and requests accessed by the organization that are shared by
more than one client within the organization. The right graph shows the fraction of objects and requests accessed by
the organization that are shared with at least one other organization.



91
9

75
9

62
6

38
4

35
9

33
3

28
1

22
0

20
5

19
3

18
4

18
0

17
4

17
2

16
8

16
3

15
0

13
1

12
3

11
5

Clients in Organization

0

20

40

60

80

100

%
 O

b
je

ct
s

(a) Object Sharing

Not Shared
Shared Locally Only
Shared Globally and Locally
Shared Globally Only

91
9

75
9

62
6

38
4

35
9

33
3

28
1

22
0

20
5

19
3

18
4

18
0

17
4

17
2

16
8

16
3

15
0

13
1

12
3

11
5

Clients in Organization

0

20

40

60

80

100

%
 R

eq
u

es
ts

(b) Request Sharing

Figure 5: Breakdown of objects (a) and requests (b) into the different categories of sharing, for the 20 largest organi-
zations. The labels on the x-axis show the number of clients in each organization shown.

� On average, a globally-shared object is accessed by
only one client in each organization.

A key question raised by these figures is whether the
objects shared within an organization are thesameset of
objects that are shared across organizations. Figure 5a
shows, for the 20 largest organizations, a breakdown of
organization-accessed objects into various sharing cate-
gories: local only, global only, local and global, and not
shared. Figure 5b shows the same breakdown by request.
The graphs are ordered in decreasing organization size,
with the organization size shown on the x-axis.

From Figure 5b, we see that the fraction of requests
to shared objects is fairly flat across these organiza-
tion sizes. As we would expect, the fraction that
are shared globally-only rises somewhat with decreased
organization size, while the fraction that are locally-
shared decreases with decreasing organization size. That
is, in general, the smaller the organization, the less
organization-internal sharing, and the more global shar-
ing. Looking at the white section of the bars in both fig-
ures, we see that the small percentage of objects that ac-
count for both local and global sharing are very hot, and
account for a much greater fraction of the requests than
the objects they represent. In contrast, the percentage of
requests to objects shared locally-only is very small for
these organizations.

To aid in the understanding of the degree of object
sharing, Figure 6 plots the number of objects (on the y-
axis) that were shared by exactlyx organizations. Most
objects are accessed by only one organization, as shown
by the steepness of the curve atx = 1. We also found
that there were more than 1000 objects accessed by 20
organizations and more than 100 objects accessed by 45
organizations.
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Figure 6: The number of objects accessed by a given
number of organizations. Note that the y-axis uses a log
scale.

A key question with respect to our sharing data is
whether organization membership is significant. To an-
swer this question, we randomly assigned clients to orga-
nizations, and compared the inter- and intra-organization
sharing in the random assignments with the sharing seen
in our trace analysis presented above. (The random orga-
nizations had the same sizes as the actual organizations.)
Figure 7a plots the fraction of requests to locally-shared
objects of the trace organizations and three randomly-
assigned organizations. From the figure, we see that
sharing is higher in the real organizations than in the
randomly-assigned organizations. In other words, there
is locality of references in organization membership.
Figure 7b plots the fraction of requests to globally-shared
objects for the trace and for the three random organiza-
tions. As expected, there is no significant difference in
the amount of global sharing between the real trace and
the randomized organization assignment.
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The organization-oriented data show that there is, in
fact, significance to organization membership. Members
of an organization are more likely to request the same
documents than a set of clients of the same size chosen at
random. However, the vast majority of the requests made
are to objects that areglobally shared. In addition, ob-
jects that are shared both locally within an organization
and globally with other organizations are more likely to
be requested by an organization member. This suggests
that the most requested objects are universally popular.

Object and Server Popularity

For another aspect of sharing patterns we examine the
servers that are being accessed and server proximity (i.e.,
which servers are close to each other in the network).

Figure 8 shows the cumulative distribution functions
of both server popularity and server subnet popularity,
where popularity is measured by the request-count. The
byte-count curves for server popularity and server subnet
popularity are effectively identical to the request-count
curves shown in the graph. The data indicates that 50%
of the objects accessed and bytes transferred come from
roughly the top 850 servers (out of a total of 244,211
servers accessed). A server subnet is a set of servers that
share the same first 24 bits of their IP addresses. Such
groups of servers are typically mirrors of each other, or
at least sit in a single server farm owned by a single com-
pany. We see that 50% of the objects come from about
the top 200 server subnets; 18% come from the top 20
subnets.

6 Document Cacheability
This section examines cacheability of documents, giving
us insight into the potential effectiveness of proxy caches
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Figure 8: The cumulative distributions of server and
server subnet popularity.

in our environment. Web proxy caches are a key per-
formance component of the WWW infrastructure; their
objective is to improve performance through caching of
documents requested more than once. Proxies typically
live at the boundaries of an organization, caching docu-
ments for all clients within that organization.

In Figure 2 we saw a time-series graph of the percent-
age of duplicate requests (i.e., requests to a previously-
accessed document) and cacheable requests in our trace.
The cacheable requests are those made to documents
that would be cached by a standard proxy cache, such
as Squid [25]. We found that, in steady state, approxi-
mately 45% of the requests are duplicate and cacheable,
placing an upper bound on the hit rate. The wide differ-
ence between the duplicate line and the cacheable line
indicates that only about half of the duplicate requests
(which could benefit from caching) are to objects that
are cacheable.
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Figure 9: Reasons for uncacheability of HTTP transac-
tions.

Our cacheability analysis is based on the implementa-
tion of the Squid proxy cache. We examined the policies
implemented by both Squid version 1 and Squid version
2. There are several reasons why a Squid proxy may con-
sider a document uncacheable.

� CGI – The document was created by a CGI script or
program and is not cached, because it is produced
dynamically.

� Cookie– The response contains a set-cookie header.
Squid version 1 does not allow these responses to be
cached, but Squid version 2 does allow them to be
cached.

� Query– The request is a query, i.e., the object name
includes a question mark (“?”).

� Pragma – The response is explicitly marked un-
cacheable with a “Pragma: no-cache” header.

� Cache-Control– The response is explicitly marked
uncacheable with the HTTP 1.1 Cache-Control
header.

� Method – The request method is not “GET” or
“HEAD”.

� Response-Status– The server response code does
not allow the proxy to cache the response. For
example, response code 302 (Moved Temporarily)
cannot be cached when there is no explicit expira-
tion date specified.
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Figure 10: Breakdown by content-type of the un-
cacheable HTTP transactions.

� Push-Content– The content type “multipart/x-
mixed-replace” is used by some servers to specify
dynamic content.

� Auth – Requests that specify an Authorization
header.

� Vary– Responses that specify a Vary header.

Figure 9 shows a breakdown of all HTTP requests,
detailing the percentage that are uncacheable for each
of the reasons listed above. As the figure shows in the
bar labeled “OverallUncache”, 40% of the requests are
uncacheable for one or more of the itemized reasons.
Queries and Response Status are the two major reasons
for uncacheability. Adding up the percentages for each
reason sums to an amount greater than the overall un-
cacheability rate, showing that many documents are un-
cacheable for more than one reason. The figure also
shows, for each itemized reason, the percentage of HTTP
requests that are uncacheable only due to that reason. Fi-
nally, the figure shows that 16% of Web requests are un-
cacheable for two or more reasons. Figure 10 shows the
most common content types for the uncacheable docu-
ments.

Our intent in analyzing the cacheability of documents
is to show which requests a deployed proxy cache would
be allowed to store if it were given the request stream
from our trace. However, one should not infer from our
analysis that all of the uncacheable requests are truly dy-
namic content. Web content providers may choose to
mark documents uncacheable for other reasons, such as
the desire to track the behavior of individual users. Fig-
ure 10 shows that more than 12% of all the uncacheable
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Figure 11: The left graph shows the fraction of cacheable objects and cacheable requests accessed by each organiza-
tion. The right graph shows the fraction of objects and requests that are both cacheable and shared by more than one
organization.

documents have the image/gif content type, and we sus-
pect that very few of these images are truly dynamic con-
tent.

Figure 11a shows, for each organization, the percent-
age of objects (black line) requested by the organiza-
tion that are potentially cacheable. The light grey line
shows, for each organization, the percentage of requests
whose responses are cacheable. The figure shows that the
percentage of cacheable objects is somewhat lower than
the percentage of cacheable requests. The percentage of
cacheable requests gives an upper bound on the hit rate
each organization could see with an organization-local
proxy cache.

Figure 11b shows, for each organization, the percent-
age of cacheable shared objects (the black line), and
the percentage of cacheable shared requests in two cat-
egories. The medium grey line shows those first requests
by an organization to globally shared objects. The light
grey line shows the total number of requests by an orga-
nization to globally shared objects. The difference be-
tween these two lines represents the duplicate requests
by an organization to globally shared objects. If each or-
ganization has its own cache, then the local cache can
handle all duplicate requests whether or not there is a
global cache. If there is a global cache in addition to
the local caches, then the global cache will miss on the
first request by any of the organizations, but will hit on
all the first requests by other organizations that follow.
One can conclude from this graph that there is significant
sharing among organizations (as shown by the light grey
line), but that a large fraction of that sharing is captured
just with organizational caches (as shown by the differ-
ence between light and medium grey lines). Therefore,

a global cache in addition to the local caches will help,
but not nearly to the degree indicated by the amount of
sharing among organizations. Another interesting ques-
tion is whether a single global cache would be better than
using local caches. We explore this question in a related
paper [26].

A last factor that can affect the performance of caching
is object expiration time. We found overall that only
9.2% of requests had an expiration specified. Most of
these requests are to objects that expire quickly; 47% are
to objects that expire in less than 2 hours. Interestingly,
of those that did have an expiration specified, 26% had a
missing or invalid date and 29% had an expiration time
that had already passed.

Finally, we have not presented detailed cache simula-
tions here; our objective is simply to analyze cacheabil-
ity of documents in the most recent data. From our
data, it appears that the trends with respect to cacheabil-
ity of documents are getting worse. For example, our
measurement that 40% of all document accesses are un-
cacheable is significantly higher than the 7% reported
for client traces at Berkeley in 1997 [16]. Without
widespread deployment of special mechanisms to deal
with caching, such as caching systems that handle dy-
namic content [7, 8], the benefits of proxy caching are
not likely to improve.

7 Conclusions

In this paper, we have collected and analyzed a large re-
cent trace taken in a university setting. Our study has
focused on sharing of Web documents within and among
a diverse set of organizations within a large university.



We can reach the following conclusions from our data:

� Organization membership appears to be significant:
members of an organization are more likely to re-
quest the same documents than a set of clients of
the same size chosen at random from all the clients
in the population. However, the vast majority of the
requests made (and the objects requested) are to ob-
jects that are shared among multiple organizations.

� Objects that are simultaneously shared locally by an
organization and globally with other organizations
are more likely to be requested by an organization
member than objects that are just shared locally or
just shared globally. This suggests that the most-
requested objects by an organization are globally
and universally popular.

� The trace shows mostly minor differences relative
to earlier traces in terms of many of the basic char-
acteristics. However, we see two important dif-
ferences compared to previous traces. The first is
that the percentage of requests to uncacheable doc-
uments is significantly higher. The second is that
a significant amount of audio/video content appears
in our trace.

When analyzing these conclusions, one must keep in
mind that we do not know how similar our university or-
ganizations are to typical commercial organizations that
connect to the Internet, but we hope to investigate this
question in future work. We have only begun to analyze
the data we have collected. Other future work includes a
more detailed statistical analysis of various aspects of the
data already collected as well as a study of the evolution
of WWW traffic characteristics over time. Towards this
end, we plan to repeatedly trace and examine Web traffic
at the University of Washington.
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