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Abstract into potential performance-enhancing mechanisms and
alternative caching structures.
Performance-enhancing mechanisms in the World Wide - oy analysis of document sharing within an organiza-
Web primarily exploit repeated requests to Web docu;q, s straightforward and can help predict the benefits
ments by multiple clients. However, little is known about of an organizational proxy cache [13]. Studying shar-
patterns of shared document access, particularly from dil'ng across multiple organizations is much more diffi-
verse client populations. The principal goal of this pa-¢,s ‘however. Tracing of the entire Web is obviously
per is to examine the sharing of Web documents from an, . ‘achievable, but even simultaneous traces of muiti-

organizationalpoint of view. An organizational analy- e organizations do not currently exist. In addition, the

sis of sharing is important, because caching is often pefzaqirement of most organizations for anonymization of

formed on an organizational basis; i.e., proxies are typiyg| s and IP addresses, along with the different dates of

cally placed in front of large and small companies, uni-y4t5 capture, makes correlation of separate traces chal-
versities, departments, and so on. Unfortunately, S'”‘“'Tenging if not impossible.

taneous multi-organizational traces do not currently exist . . . .
9 y In this study, we use The University of Washing-

and are difficult to obtain in practice. ton (UW) as a basis for modeling intra- and inter
The goal of this paper is to explore the extent of doc- S . . ] . i
g pap P organizational Web-object sharing. The UW is the

ument sharing (1) among clients within single organiza-

tions, and (2) among clients across different organiza[argestumversnymthe northwest part of the U.S., with a

: : : lation of over 50,000 people, including 35,000 stu-
tions. To perform the study, we use a large university adoPu ; .
a model of a diverse collection of organizations. Within dents, 10,000 full-time staff, and 5,000 faculty. The uni-

our university, we have traced all external Web reques:té’.er_SIty has a large communications mfrastructur_e, con-
isting of thousands of computers connected via both

and responses, anonymizing the data but preserving OEigh-speed networks and modems. Together, this com-

ganizational membership information. This permits us i : Kload of about 17 400 uni "
to analyze both inter- and intra-organization documen{"tNity generates a workioad orabout 17, university-

sharing and to test whether organization membership igxterngl web requ_ests _p_er mmut_e at pea_k per|ods.
significant. As well, we characterize a number of param- As with other universities, UW is organized into many
eters of our data, including basic object characteristicscolleges, departments, and programs, each with its own

object cacheability, and server distributions. disparate administrative, academic, or research focus.
For example, the UW includes museums of art and natu-
1 Introduction ral history, medical and dental schools, libraries, admin-

istrative organizations, and of course academic depart-
The need to understand Web behavior and performanaments, such as music, Scandinavian languages, and com-
has led to a large number of studies, aimed in particputer science. What do such diverse organizations have
ular at classifying Web documemharacteristics[11, in common with respect to their Web access requests?
12, 13, 16, 21]. In contrast, the principal goal of this To answer this question, we have traced all UW-external
study is to evaluate documeslharing behavioon the  Web requests; we anonymize the data in such a way as to
Web, bothwithin organizations andetweenorganiza- identify requests (and associated responses) with the 170
tions. By document sharing, we mean access to the sanw so independent organizations from which they were is-
Web documents by different clients. Sharing behaviorsued. This permits us to study organization-specific doc-
has obvious implications for performance, particularlyument access and sharing behavior. We have collected
with respect to the effectiveness of proxy caching (e.g.a number of traces during the period from October 1998
[9, 14, 17, 20, 27]). Proxy caches are often located at orthrough the present. In general, all of our traces show
ganizational boundaries and improve performance onlfthe same basic patterns. The results in this paper are
if many documents are shared by many clients. Therebased on a representative one-week trace taken in mid-
fore, an understanding of sharing gives us added insigh¥lay 1999, and therefore show the very latest character-



istics of modern Web traffic. ets from the network interfaces to the user-level moni-
The paper is organized as follows. The next sectiortoring process, which analyzes the packets and produces
provides a brief description of related work. In Section 3a trace. The user-level process consists of three layers:
we describe our trace-capture methodology. Section ACP segment analysis, HTTP header processing, and
contains a high-level description of the workload we logging. The TCP segment analysis layer classifies indi-
traced. Section 5 focuses on organization-based statisidual TCP packets into TCP connections and identifies
tics and also provides inter- and intra-organization sharthe first data segments in each connection. The first data
ing analysis. In Section 6 we discuss cacheability of docsegment is used to decide whether or not the connection
uments, and reasons why documents are not cacheable.an HTTP connection. This technique allows us to see
Finally, Section 7 summarizes our study and its results. all HTTP traffic (not just port 80). Once a connection has
been classified as an HTTP connection, we monitor fur-
2  Previous Work ther segments on that connection so that we can locate all
the relevant HTTP headers when persistent connections
Numerous recent studies of Web traffic have been perare in use. The HTTP header processing layer is respon-

formed. These studies include analyses of Web accesble for parsing the HTTP headers extracted from TCP
traces from the perspective of browsers [11, 21], prox-data segmentsin the HTTP connection. Once the headers

ies [2, 4, 6, 10, 12, 15, 18, 19, 24], and servers [1, 3, 23]have been parsed, we extract the fields to be saved and
The earlier tracing studies were rather limited in requesgnonymize those fields that contain sensitive informa-
rate, number of requests, and diversity of popu|ation_ti0n. We also anonymize the IP addresses here, and then
The most recent tracing studies have been larger and gefass that information to the logging layer. The logging
erally more diverse. In addition to static analysis, somdayer takes the information from the HTTP parser, con-
studies have also used trace-driven cache simulation téerts it to a compact binary representation, compresses
characterize the locality and sharing properties of theséd, and writes it to disk. We maintain packet loss coun-
very large traces [2, 5, 13, 15, 16, 19], and to study the efters on the monitoring host at the device driver level, at
fects of cookies, aborted connections, and persistent corihe packet filter level, and at user level. During the May
nections on the performance of proxy caching [5, 15]. trace, we measured the packet loss at .0007%. It is also
In this paper, we expand on these previous research epossible for the switches to drop packets, and we cannot
forts. Our focus is on sharing and cacheability; howeverdetect packet loss at the these switches, but the UW net-
we can also compare our current HTTP traffic characterwork administrators who manage the switches tell us that
istics to earlier studies, showing how the Web workloadthey have significant excess capacity.
has changed. Our work is based on the most recent data\We use an anonymization approach that protects pri-
from a large diverse population. More important, we pre-vacy but preserves some address locality information.
serve enough information so that we can analyze requeskor internal addresses, we classify the IP address based
with respect to inter-organization and intra-organizationon its “organization” membership. An organization is

document sharing. a set of university IP addresses that forms an administra-
tive entity; an organization may include multiple subnets.
3 Measurement Methodology For instance, all machines in the Computer Science De-

partment are in a single organization, machines in the
We usepassive network monitorinig collect our traces Department of Dentistry are in another, and machines
of Web traffic traveling between the University of Wash- connected to the campus Museum of Natural History are
ington and the rest of the Internet. UW connects to itsin yet another. We constructed the mapping from subnets
Internet Service Providers via two border routers; oneto organization identifiers based on information obtained
router handles primarily outbound traffic and the otherfrom the campus network administrators. Once the orga-
inbound traffic. These two routers are fully connectednization identifiers are assigned, both the IP address and
to four 100-megabit Ethernet switches distributed acrosghe organization identifier are anonymized. Furthermore,
the campus. Each switch has a monitoring port that issome bits of information in the IP address are destroyed
used to send copies of the incoming and outgoing packbefore anonymization to make the anonymization more
ets to our monitoring host, which analyzes the packetsecure. If the hash function or key is compromised, no
and produces a trace. transaction can be associated with a client address with

We designed and implemented the tracing softwaredbsolute certainty.

used to produce that data in this study. Our user-level For external addresses, we anonymize each octet of
tracing software runs on a 500 MHz Digital Alpha 21164 the server IP address separately. For our purposes, two
workstation running Digital Unix V4.0. This software in- servers are near each other if they share most or all of the
stalls a kernel packet filter [22] to deliver all TCP pack- Internet path between them and the university. We con-



Content Type Content Type

image/gif 42.3 text/html
text/html 24.4 image/gif
No Content Type 17.8 image/jpeg
image/jpeg 12.3 application/octet-stream
application/x-javascript | 1.0 video/quicktime
text/plain | 1.0 application/zip
application/octet-stream ]0.4 video/mpeg
text/css |0.1 text/plain
application/vnd.rn-realplayer |0.1 No Content Type
audio/x-pn-realaudio (0.1 audio/mpeg
application/zip [0.0 video/x-msvideo
application/pdf (0.0 application/x-macbinary
video/mpeg |0.0 application/pdf
multipart/x-mixed-replace (0.0 audio/x-pn-realaudio
video/quicktime 0.0 multipart/x-mixed-replace
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Figure 1: Histogram of the top 15 content types by count and size.

sider two servers to be on the same subnet when the firgequests per minute (at 5 AM) and a peak of 17,400 re-
three octets of their IP addresses match. Given the usguests per minute (at 3 PM).
of classless routing in the Internet, this scheme will not  Figures 1a and 1b present a histogram of the top con-
provide 100% accuracy, but for large organizations wetent types by object count and bytes transmitted, respec-
expect that this assumption will be overly conservativetively. By count, the top four are image/gif, text/ntml,
rather than overly aggressive. No Content Type, and image/jpeg, with all the rest of
Although our tracing software records all HTTP re- the content types at significantly lower numbers. The
guests and responses flowing both in and out of UWNo Content Type traffic, which accounts for 18% of the
the data presented in this paper is filtered to only lookresponses, consists primarily of short control messages.
at HTTP requests generated by clients inside UW, and he largest percentage of bytes transferred is accounted
the corresponding HTTP responses generated by servefer by text/html with 25%, though the sum of the im-
outside of UW. All of our results are based on the entireage/gif (19%) and image/jpeg (21%) types accounts for
trace collected from Friday May 7th through Friday May 40% of the bytes transferred. The remaining content
14th, 1999, except for the organization-based sharing retypes account for decreasing numbers of bytes with a
sults in Section 5, which are from a single day (Tuesdayheavy-tailed distribution.
of our trace (the limitation is due to the memory require- Another type that accounts for significant traffic,

ments of the sharing analysis). which is not readily apparent from the table, is multime-
dia content (audio and video). The sum of all 59 different
4 High-Level Data Characteristics audio and video content types that we observed during

the May trace adds up to 14% of all bytes transferred. In

Table 1 shows the basic data characteristics. As the table
shows, our trace software saw the transfer of 677 giga-

bytes of data in response packets, requested from about gng;tZransactuons (Requesb)?g.i 2::::22
23,000 client addresses, and returned from 244,000 Clients 22'984
servers. Itis interesting that, compared to the commonly- Servers 24’4,211
used 1996 DEC trace (analyzed, e.g., in [13]), which had Total Bytes 677 GB

a similar client population, we saw four times as many Average requests/minute 8,200
requests in one week as DEC saw in 3 weeks. These re- Peak requests/minute 17,400

guests and corresponding response and close events fol-
low the typical diurnal cycle, with a minimum of 460 Table 1: Overall statistics for the one-week trace.
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Figure 2: Requests broken down into initial, duplicate, and cacheable duplicate requests over time.

addition, there is a significant amount of streaming mul-least. We believe that the large quantity of audio and
timedia content that is delivered through an out-of-bandrideo is signaling a new trend; e.g., in the data collected
channel between the audio/video player and the server.for studies reported in [12] and [16], audio traffic does

In a preliminary attempt to view some of this out-of- N0t appear. _

band multimedia traffic, we extended our tracing soft- V& were also curious about the HTTP protocol ver-
ware to analyze connections made by the Real Network§/0NS currently in use. The majority of requests in our
audio/video player, examining port 7070 traffic. Newer [fac€ (53%) are made using HTTP 1.0, but the major-
versions of the Real Networks player use the RTSP proly Of responses use HTTP 1.1 (69%). In terms of bytes
tocol, which we do not handle. The Real Networks transferred, the majority of bytes (75%) are returned
player sets up a TCP control connection on port 7070T0mM HTTP 1.1 servers. _

and then transfers the data on UDP port 7070. Our trace | Nese statistics simply serve to provide some back-
software only collects TCP segments, so we analyze thground about the general natur_e (_)f the trace data, in _order
control connection to determine how much data is beingto set the context for the analysis in the next two sections.

transferred. When the control connection is shut down . .
a “statistics” packet is transmitted that contains the aver—5 Analysis of Document Sharing

age bandwidth delivered (in bits per sec_ond) as measureflhis section presents and analyzes our trace data, focus-
by the client for the completed connection. We take tha‘ing on document sharing. As previously stated, our in-

that bit-rate and multiply it by the connection duration tention is to use the university organizations as a simple

time to estimate the size of the content transferred. Somf':'nodel of independent organizations in the Internet. Our

of the cpntroll connections do not transmit thg statlst|csgoal is to answer several key questions with respect to
packet, in which case we cannot make an estimate.

Web-document sharing, for example:

During the week of the May trace, we observed 55000 1. How much object sharing occurs between different
connections, of which approximately 40% had statis- organizations?
tics packets. For those 40%, we calculated that 28 2. Wwhat types of objects are shared?
GB of Real-Audio and Real-Video data were transferred 3. How are objects shared in time?
(which would scale to 10% of the amount of HTTP data 4
transferred if the other 60% of connections have similar
characteristics). Furthermore, the Real-Audio and Real-
Video objects themselves are quite large, with an average
size of just under a megabyte. When we sum up all the
different kinds of multimedia content, we see that from
18% to 24% of Web related traffic coming in to the Uni-
versity is multimedia content, and this is a lower bound Figure 2 plots total Web requests per 5 minute period
since we know that we're missing RTSP traffic at the veryover the one-week trace period. The shading of the graph

Is membership in an organization a predictor of
sharing behavior?

5. Are members of organizations more similar to each
other than to members of different organizations,
or do all clients behave more-or-less identically in
their request behavior?



divides the curve into three areas: the darkest portionight grey line shows the percentage of all organization
shows the fraction of requests that are initial (first) re-requeststhat are to these locally-shared objects. The
guests to objects, while the medium grey portion showsrganizations are ordered by decreasing locally-shared
the subset that are duplicate (repeated) requests to doobject percentage. From our data on intra-organization
uments. A request is considered a duplicate if it is to asharing we can make the following observations:
document previously requested in the trace by any client.
The lightest grey color shows those requests that are both ® Only a small percentage (4.8% on average) of
duplicate and cacheable, as we will discuss later. the objects accessed within an organization are
Overall, the data shows that about 75% of requests are ~ shared by multiple members of the organization (the
to objects previously requested in the trace. This matches ~ Smooth black line).
fairly closely the results of Duska et al. on several large
organizational traces [13]. The percentage of shared re-
quests rises very slowly over time, as one might expect.
From our one-week trace, we cannot yet see the peak;
however, this analysis does not consider document time- e The average number of requests per locally-shared
outs or replacements, therefore the 75% is optimistic if object is 4.0 — higher than the minimal 2 requests
used as a basis for prediction of cache behavior. Fur-  required for an object to be considered shared.
thermore, we cannot tell from the figure how many of
the requests to a shared object were duplicate requests® Each locally-shared object is requested by two
from the same client; overall, we found that about 60%  clients on average in each organization.
of the requests to shared documents were first requests by

a client to those documents; 40% were repeated requests':'gut.r € t4b|j’ hov:i thtﬁ mit(el'r-orgﬁnlzat;;mc(bal) shtar- f
by the same client. Ing activity. Here the black line shows the percentage o

. . all objects accessed by each organization that were also
A key component of our data is the encoding of the S
N . : ; accessed by at least oatherorganization; we call such
organization number, which allows us to identify eaChob'ect loballv-sharecbbiects. Similarlv. the liaht are
client as belonging to one of the 170 active university or- Jectsy y ) . Y ghtgrey

ganizations. These organizations include academic anie shows the percentage of atiquestsby an organi-

o . ...~ zation to globally-shared objects. The organizations are
administrative departments and programs, dorm|tor|es(,)rdered by decreasing globally-shared object percentage.

and the unlvers@y—vylde modem pool. Figures 3a and 3bFrom our data on inter-organization sharing we can make
show the organization size, the request rate, and num,

ber of objects accessed by each organization. There arge following observations:
several very large organizations, with most somewhat
smaller. The largest organization has 919 “anonymized”
clients, the second largest organization is the modem
pool with 759 clients, and the third largest organization
has 626 client$.The top 20 organizations all have more
than 100 clients, as shown by the labels in Figure 5. Be-
cause of the way that client IP addresses are anonymized,
we cannot uniquely identify an individual client, i.e.,
each anonymized client address could correspond to up
to 4 separate clients. For this trace the ratio of “real”
clients to “anonymized” clients measured by the low lev-
els of our trace software is 1.67; therefore, our 13,701 e For 65% of the organizations, more than half of the
anonymized clients represent 22,984 true clients. objects referenced are globally-shared objects (the

Using the organization data, we can analyze the  smooth black line).
amount of object sharing that occurs both within and be-
tween organizations.

Figure 4a shows intra-organizatioto¢al) sharing
from the perspective of both objects and requests. The
black line shows the percentage of all objects accessed

by each organization that alecally-sharecbbjects, i.e., o However, globally-shared objects are not requested
accessed by more than one organization member. The frequently by each organization. On average,

1The modem pool is somewhat special, because multiple clientscan ~ €ach orgapization makes 1.5 requests to a globally-
login through a single IP address in the pool. shared object.

e However, a much larger percentage requests
(16.4% on average) are to locally-shared objects
(the light grey line).

e There is more sharing with other organizations than
within the organization; the fraction of globally-
shared objects and requests in Figure 4b is much
higher than the locally-shared objects and requests
in Figure 4a. This is not surprising, because the
combined client population of all of the organiza-
tions is significantly larger than any one organiza-
tion alone. As a result, there is a much greater op-
portunity for the clients in one organization to share
with clients from any of the other organizations.

e For 94% of the organizations, more than half of
the requests are to globally-shared objects, and for
10% of the organizations 75% of the requests are to
globally-shared objects (the light grey line).
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Figure 3: Distribution of clients, objects, and requests in organizations. The object and request graph is sorted by the
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Figure 4: The left graph shows the fraction of objects and requests accessed by the organization that are shared by

more than one client within the organization. The right graph shows the fraction of objects and requests accessed by
the organization that are shared with at least one other organization.
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e On average, a globally-shared object is accessed by

. N . . 1000000 <
only one client in each organization. ]

100000

A key question raised by these figures is whether thg, po o 10000
objects shared within an organization are sheneset of Objects ]
objects that are shared across organizations. Figure B&cessed 1000 -
shows, for the 20 largest organizations, a breakdown of (log) ]

. . . . . . 100
organization-accessed objects into various sharing cate- ]

gories: local only, global only, local and global, and not 104

shared. Figure 5b shows the same breakdown by request. T A
. . . . . 1 — T T T4

The graphs are o_rdere_d in decreasing organization size, 0 20 40 60 80 100 120 140

with the organization size shown on the x-axis. # of Requesting Organizations

From Figure 5b, we see that the fraction of requests
to shared objects is fairly flat across these organizaFigure 6: The number of objects accessed by a given
tion sizes. As we would expect, the fraction that number of organizations. Note that the y-axis uses a log
are shared globally-only rises somewhat with decreasegcale.
organization size, while the fraction that are locally-
shared decreases with decreasing organization size. ThatA key question with respect to our sharing data is
is, in general, the smaller the organization, the lessvhether organization membership is significant. To an-
organization-internal sharing, and the more global sharswer this question, we randomly assigned clients to orga-
ing. Looking at the white section of the bars in both fig- nizations, and compared the inter- and intra-organization
ures, we see that the small percentage of objects that agharing in the random assignments with the sharing seen
count for both local and global sharing are very hot, andn our trace analysis presented above. (The random orga-
account for a much greater fraction of the requests thanizations had the same sizes as the actual organizations.)
the objects they represent. In contrast, the percentage ®igure 7a plots the fraction of requests to locally-shared
requests to objects shared locally-only is very small forobjects of the trace organizations and three randomly-
these organizations. assigned organizations. From the figure, we see that

To aid in the understanding of the degree of objectsharing is higher in the real organizations than in the
sharing, Figure 6 plots the number of objects (on the yrandomly-assigned organizations. In other words, there
axis) that were shared by exacttyorganizations. Most is locality of references in organization membership.
objects are accessed by only one organization, as showfigure 7b plots the fraction of requests to globally-shared
by the steepness of the curveaat= 1. We also found objects for the trace and for the three random organiza-
that there were more than 1000 objects accessed by 2ibns. As expected, there is no significant difference in
organizations and more than 100 objects accessed by 4Be amount of global sharing between the real trace and
organizations. the randomized organization assignment.
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Figure 7: Fraction of requests in the organization that are shared within this organization (a) and shared with at least
one other organization (b), compared with three random client-to-organization assignments.

The organization-oriented data show that there is, in 100
fact, significance to organization membership. Members
of an organization are more likely to request the same 80
documents than a set of clients of the same size chosen at 1
random. However, the vast majority of the requests made— 60 -
are to objects that amglobally shared. In addition, ob- ]
jects that are shared both locally within an organization

al

% Tot

40

. . . . Requests to Server Subnets
and globally with other organizations are more likely to ] — Requests to Servers

be requested by an organization member. This suggests
that the most requested objects are universally popular.

Object and Server Popularity Ot———F7 7 7 T
0 2000 4000 6000 8000 10000
For another aspect of sharing patterns we examine the Server and Server Subnet Number
servers that are being accessed and server proximity (i.e. ) o
which servers are close to each other in the network). Figure 8: The cumulative distributions of server and
Figure 8 shows the cumulative distribution functions S€Ver subnet popularity.
of both server popularity and server subnet popularity, )
where popularity is measured by the request-count. Th our environment. \Web proxy caqhes are a key per-
byte-count curves for server popularity and server subn Pr_mance_component of the WWW mfrastructure;_thelr
popularity are effectively identical to the request-countc’bject've Is to improve performance through caching of

curves shown in the graph. The data indicates that 50‘%0(:umentS requesfced more than once. Proxie_s typically
of the objects accessed and bytes transferred come frofff€ &t ';he bli)ul'f‘da”es, %f anhorganlzqtloq, caching docu-
roughly the top 850 servers (out of a total of 244,211me|§_ or azc lents wit |.nt at o'rganlzat;lonf. h

servers accessed). A server subnet is a set of servers that h Figure 2 we saw a time-series graph of the percent-

share the same first 24 bits of their IP addresses. Suchd€ Of duplicate requests (i.e., requests to a previously-

groups of servers are typically mirrors of each other, oﬁ}ﬁcesse(:] dot;:lument) and cachc—rz]able rquests '3 our trace.
at least sit in a single server farm owned by a single com- e Caclde?a € reﬁu:sés are t (()jsedma e lo gcumenﬁs
pany. We see that 50% of the objects come from aboulat Would be cached by a standard proxy cache, suc

the top 200 server subnets; 18% come from the top 26 Squid [25]. We found that, in steady state, approxi-
subnets mately 45% of the requests are duplicate and cacheable,

placing an upper bound on the hit rate. The wide differ-

- ence between the duplicate line and the cacheable line
6 Document Cacheability indicates that only about half of the duplicate requests
This section examines cacheability of documents, givingwhich could benefit from caching) are to objects that

us insight into the potential effectiveness of proxy cachesre cacheable.
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Figure 9: Reasons for uncacheability of HTTP transac- .
dynamic content.

tions.
e Auth — Requests that specify an Authorization
Our cacheability analysis is based on the implementa-  header.
tion of the Squid proxy cache. We examined the policies o \ary— Responses that specify a Vary header.
implemented by both Squid version 1 and Squid version
2. There are several reasons why a Squid proxy may con- Figure 9 shows a breakdown of all HTTP requests,
sider a document uncacheable. detailing the percentage that are uncacheable for each
i of the reasons listed above. As the figure shows in the
 CGI-The documentwas created by a CGI script Orpar [apeled “OverallUncache”, 40% of the requests are
program and is not cached, because it is producedncacheable for one or more of the itemized reasons.
dynamically. Queries and Response Status are the two major reasons
e Cookie— The response contains a set-cookie headefor uncacheability. Adding up the percentages for each
Squid version 1 does not allow these responses to beeason sums to an amount greater than the overall un-
cached, but Squid version 2 does allow them to becacheability rate, showing that many documents are un-
cached. cacheable for more than one reason. The figure also
e Query— The request is a query, i.e., the object nameShows, for each itemized reason, the percentage of HTTE
includes a question mark (“?"). requests that are uncacheable only due to that reason. Fi-
) . nally, the figure shows that 16% of Web requests are un-
* Pragma- The re“sponse IS exphcnlyﬂmarked UN" cacheable for two or more reasons. Figure 10 shows the
cacheable with a “Pragma: no-cache” header. most common content types for the uncacheable docu-
e Cache-Control- The response is explicitly marked ments.
uncacheable with the HTTP 1.1 Cache-Control OQur intent in analyzing the cacheability of documents

header. is to show which requests a deployed proxy cache would
e Method — The request method is not “GET” or be allowed to store if it were given the request stream
“HEAD”. from our trace. However, one should not infer from our

« Response-Status The server response code doeSanaly&sthat all of the uncacheable_requests are truly dy-
not allow the proxy to cache the response. Fohamic content. Web content providers may choose to

example, response code 302 (Moved Temporarily)mark documents uncacheable for other reasons, such as

cannot be cached when there is no explicit expira-"e igs'rhe to t:ﬁct the b‘:ﬁa"'irzoo/f mfd“llllctjﬁal usersr.] F'%}
tion date specified. ure 10 shows that more than 12% of all the uncacheable
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Figure 11: The left graph shows the fraction of cacheable objects and cacheable requests accessed by each organiza-
tion. The right graph shows the fraction of objects and requests that are both cacheable and shared by more than one
organization.

documents have the image/qgif content type, and we susa global cache in addition to the local caches will help,
pect that very few of these images are truly dynamic conbut not nearly to the degree indicated by the amount of
tent. sharing among organizations. Another interesting ques-
Figure 11a shows, for each organization, the percenttion is whether a single global cache would be better than
age of objects (black line) requested by the organizausing local caches. We explore this question in a related
tion that are potentially cacheable. The light grey linepaper [26].
shows, for each organization, the percentage of requests A last factor that can affect the performance of caching
whose responses are cacheable. The figure shows that tiseobject expiration time. We found overall that only
percentage of cacheable objects is somewhat lower tha®2% of requests had an expiration specified. Most of
the percentage of cacheable requests. The percentagetbese requests are to objects that expire quickly; 47% are
cacheable requests gives an upper bound on the hit rate objects that expire in less than 2 hours. Interestingly,
each organization could see with an organization-locabf those that did have an expiration specified, 26% had a
proxy cache. missing or invalid date and 29% had an expiration time
Figure 11b shows, for each organization, the percentthat had already passed.
age of cacheable shared objects (the black line), and Finally, we have not presented detailed cache simula-
the percentage of cacheable shared requests in two cdtens here; our objective is simply to analyze cacheabil-
egories. The medium grey line shows those first requestidy of documents in the most recent data. From our
by an organization to globally shared objects. The lightdata, it appears that the trends with respect to cacheabil-
grey line shows the total number of requests by an orgaity of documents are getting worse. For example, our
nization to globally shared objects. The difference be-measurement that 40% of all document accesses are un-
tween these two lines represents the duplicate requestsicheable is significantly higher than the 7% reported
by an organization to globally shared objects. If each orfor client traces at Berkeley in 1997 [16]. Without
ganization has its own cache, then the local cache cawidespread deployment of special mechanisms to deal
handle all duplicate requests whether or not there is avith caching, such as caching systems that handle dy-
global cache. If there is a global cache in addition tonamic content [7, 8], the benefits of proxy caching are
the local caches, then the global cache will miss on thenot likely to improve.
first request by any of the organizations, but will hit on
all the first requests by other organizations that follow.7 Conclusions
One can conclude from this graph that there is significant
sharing among organizations (as shown by the light greyn this paper, we have collected and analyzed a large re-
line), but that a large fraction of that sharing is capturedcent trace taken in a university setting. Our study has
just with organizational caches (as shown by the differfocused on sharing of Web documents within and among
ence between light and medium grey lines). Thereforea diverse set of organizations within a large university.
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