
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Instrumentation and Optimization of Win32/Intel
Executables Using Etch

Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman,
Wayne Wong, Hank Levy, and Brian Bershad

University of Washington
Brad Chen, Harvard University

Instrumentation and Optimization of Win32/Intel Executables Using Etch

Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman,
Wayne Wong, Hank Levy, and Brian Bershad

University of Washington

Brad Chen
Harvard University

etch-info@cs.washington.edu

Abstract

Etch is a general-purpose tool for rewriting arbi-
trary Win32/x86 binaries without requiring source code.
Etch provides a framework for modifying executables
for both measurement and optimization. Etch handles
the complexities of the Win32 executable file format
and the x86 instruction set, allowing tool builders to
focus on specifying transformations. Etch also handles
the complexities of the Win32 execution environment,
allowing tool users to focus on performing experiments.
This paper describes Etch and some of the tools that we
have built using Etch, including a hierarchical call
graph profiler and an instruction layout optimization
tool.

1 Introduction

During the last decade, the Intel x86 instruction set
has become a mainstay of the computing industry. Ar-
guably, Intel processors have executed more instruc-
tions than all other computers ever built. Despite the
widespread use of Intel processors and applications,
however, few tools are available to assist the program-
mer and user in understanding or exploiting the interac-
tion between applications, the processor, and the mem-
ory system on x86-based platforms. At the University of
Washington, we have been building a software archi-
tecture based on binary rewriting for developing such
tools on Intel x86 platforms running Win32.

This paper describes Etch, a binary rewriting sys-
tem for Win32 applications that run on Intel x86 proc-
essors. We developed Etch to aid programmers, users,
and researchers in understanding the behavior of arbi-
trary applications running on Intel architectures. Appli-
cation source is not required to rewrite a program. Etch
supports general transformations on programs, so that
they can also be rewritten to optimize their perform-
ance, without access to the original source code.

Etch is targeted at three different user groups: ar-
chitects, who wish to understand how current applica-
tion workloads interact with the architecture of a com-

puter system; developers, who wish to understand the
performance of their programs during the development
cycle; and users, who wish to understand and improve
the performance of common applications executing in
their environment. Etch provides all three groups with
measurement tools to evaluate performance at several
levels of detail, and optimization tools to automatically
restructure programs to improve performance, where
possible.

Previous binary modification tools such as pixie
[Chow et al. 1986], ATOM [Srivastava & Eustace
1994] and EEL [Larus & Schnarr 1995] run on RISC-
based UNIX systems. Other tools for modifying x86
programs, such as MPTrace [Eggers et al. 1990], run on
UNIX systems and require access to compiler-generated
assembly language versions of the input programs. In
contrast, Etch, like TracePoint’s Hiprof call graph pro-
filing tool [TracePoint 1997], works directly on Win32
x86 binaries. This environment creates several chal-
lenges that are not present in UNIX-based environ-
ments, including:

• code discovery: The complexity of the x86 instruc-
tion set and the current practice of interleaving data and
executable instructions in the text segment make it diffi-
cult to statically discover code within an executable
image. Although the structure of the Win32 PE header
is well defined [Pietrek 1994], there is no standard that
defines an executable's internal structure. Internally, a
binary can contain code, data, and jump tables in an
arbitrary order, and the format commonly changes from
compiler to compiler. A binary rewriting tool must be
able to accurately distinguish between code and data so
that it can rewrite code while leaving data intact. Failure
to make this distinction can result in a broken executa-
ble or in large amounts of uninstrumented code.

• module discovery: Win32 applications are com-
monly composed of a top level executable and a large
number1 of dynamically linked libraries (DLLs). Al-

1 As an example, Lotus Wordpro 96 loads 41 DLLs during a simple
use of the application, of which 17 are listed in the executable header
and 24 are identified during the run of the application.

though some of the libraries may be statically identified
in the executable headers, many are identified and
loaded dynamically. In this case the names of the DLLs
to be loaded by an application can only be determined
by running the program. Transformation of such a
loosely structured application requires that an instru-
mentation tool be able to identify all the DLLs used by
a program. In contrast, most UNIX applications are
composed of a single statically loaded executable, or an
executable and a relatively small number of shared li-
braries.

• environment management: A Win32 application
executes in a context, which includes its working di-
rectory and the program name by which it was invoked.
Unlike typical UNIX applications, many Win32 appli-
cations are sensitive to this context and may not work
when the module used by the application is copied or
moved into a different directory. Consequently, it is
necessary to run a transformed executable within a pro-
tective “shell” that makes it appear as though the Win32
executable is running in its original context.

2 The Model

Etch is a system framework that supports integra-
tion of nearly any type of measurement and optimiza-
tion tool, similar to systems such as ATOM and EEL.
Etch permits measurement tools to instrument an x86
binary so that the application program, when executed,
produces the required measurement data as it runs. For
example, one tool may instrument the program to pro-
duce a trace of all memory reads and writes, while an-

other may instrument the program to record the number
of conditional branch instructions that succeed or fail.
Furthermore, because Etch allows complex modifica-
tions to the executable binary, Etch tools can also re-
write the program in order to improve its performance.
For example, an Etch tool may reorder instructions to
optimize for the pipeline structure of a particular proc-
essor implementation, or it may relocate procedures to
improve memory system locality and behavior.

Etch separates the process of instrumenting and
tracing an executable into two phases: an instrumenta-
tion phase and an analysis phase. Similarly, each tool is
split into two components, an instrumentation module
and an analysis module. During the instrumentation
phase, Etch processes the program in order to “dis-
cover” the components of the program, e.g., instruc-
tions, basic blocks, and procedures. As Etch discovers
each component, it calls into the tool’s instrumentation
module, telling the module what it discovered. At each
such callback, the instrumentation module has the op-
portunity to instruct Etch to examine and possibly mod-
ify the executable, e.g., to insert measurement instruc-
tions before or after an instruction, basic block, or pro-
cedure. These inserted instructions may include calls to
procedures in the analysis module, which will be loaded
with the executable at run time (the analysis phase).
Thus, when the program runs, it will execute the addi-
tional inserted code, including calls into the tool analy-
sis routines that record or process crucial measurement
information. Finally, when the program completes, the
analysis module is given an opportunity to run analysis
routines required to process the data collected during
execution.

Original
Binaries

Analysis
Code

Instrumented/Optimized
Binary

Etch

Instrumentation
 Code

Figure 1: Etch transforms a program according to some instrumentation code, which can add new code into the
program, take old code out, or simply reorder pieces of the program.

Figure 1 illustrates the general transformation of an
executable using Etch. As Etch discovers pieces of the
original executable, it invokes the instrumentation code
in the manner indicated in Figure 2. The instrumenta-
tion tool provides implementations of “Before” and
“After” functions. These functions can in turn direct
Etch to modify the executable with respect to the spe-
cific instruction. The directions in effect say “before (or
after) this instruction runs, please call some specific
function with some specific set of arguments.” For ex-
ample, to count instructions, the InstrumentBefore pro-
cedure would direct Etch to insert a call to a procedure
that incremented a counter at run time. Instrumentation
code can add, remove, or modify instructions, or add
procedure calls at any point in the executable. There
are provisions for communicating program state (such
as register values) into analysis code at run time. By

default, all program state is with respect to the original
executable.

Once the entire executable has been traversed, Etch
generates a new version of the executable that includes
the instructions added during instrumentation. The
functions called at instrumentation points, as well as the
Etch run time library, are linked (dynamically loaded)
by the new executable. When the executable written by
Etch is run, analysis routines will run as a side effect of
running the program. These instrumentation routines
can inspect the state of the program, for example, the
contents of registers, or effective addresses. All ad-
dresses, whether text or data, are relative to the original
binary, so the collection routines do not have to reverse-
map these addresses at run time.

The transformations performed on the binary by
Etch should not change program correctness, although it

Figure 2: As Etch discovers program components during program instrumentation, it invokes instrumentation
code for that component: once before the component is written to the new executable, and once after. The im-
plementations of the Instrument* routines may direct Etch to add new code before and/or after the specified
component.

InstrumentModule(thisModule, Before)

For each procedure in the program:

 InstrumentProcedure(thisProcedure, Before)

 For each basic block in the Procedure:

 InstrumentBasicBlock(thisBasicBlock, Before)

 For each instruction in the Basic Block:

 InstrumentInstruction(thisInstruction, Before)

 InstrumentInstruction(thisInstruction, After)

 InstrumentBasicBlock(thisBasicBlock, After)

 InstrumentProcedure(thisProcedure, After)

 InstrumentModule(thisModule, After)

Figure 3: Cache miss data for a collection of popular NT applications.

is of course possible to write instrumentation or analysis
code that causes a program to break when it executes.
A program transformed for performance measurement
collection may run more slowly depending on the num-
ber of additional instructions that must be executed.
Etch does not require changes to the operating system,
but Etched binaries may utilize OS facilities, such as
software timers, or even implementation-specific facili-
ties, such as Intel Pentium performance counters.

2.1 Measurement

A typical Etch measurement tool analyzes an appli-
cation’s behavior as it runs, and at program termination
saves information about the run to disk. For example, a
cache simulation tool could examine the application’s
memory reference stream and report cache miss rates
for various cache configurations. A post-processing tool

could then predict the application's execution time
based on the cache miss rates and hypothetical proces-
sor, cache, and memory speeds. A different tool could
simply display the cache miss data graphically, as illus-
trated in Figure 3. The graph shows the number of
misses per instruction in the first level instruction cache
and the second level unified cache for the Perl inter-
preter, three commercial C++ compilers, and Microsoft
Word.

2.2 Optimization

Etch also provides facilities for rewriting an ex-
ecutable in order to improve its performance. For ex-
ample, it is possible to reorder instructions to optimize
code layout for cache and VM behavior.

Figure 4 shows the reduction in instruction cache
misses and execution time (in cycles) for a collection of

Call Graph Profile:
 parents
name %time %self %desc calls
 children

"SYNCH.EXE",_threadstart [1:29] 89.0 0.0 89.0 2
 "SYNCH.EXE",CopyToScreen [1:1] 0.0 88.0 2
 DllCall:,"KERNEL32.dll",TlsSetValue [0:12] 0.0 0.0 2
 "SYNCH.EXE",_endthread [1:30] 0.0 0.0 2
--
 "SYNCH.EXE",_threadstart [1:29] 0.0 88.0 2
"SYNCH.EXE",CopyToScreen [1:1] 89.0 0.0 88.0 2
 "SYNCH.EXE",Lock::Release [1:9] 0.0 0.0 4
 "SYNCH.EXE",Lock::Acquire [1:8] 0.0 0.0 4
 "SYNCH.EXE",getc [1:20] 0.0 4.0 1310
 "SYNCH.EXE",Condition::Signal [1:13] 0.0 0.0 2
 "SYNCH.EXE",fopen [1:27] 0.0 1.0 2
 "SYNCH.EXE",putchar [1:22] 0.0 80.0 1308

Figure 4: The performance impact of code layout optimization.

Figure 5: Excerpt of typical hierarchical call graph profiler output. For each procedure the output includes: the
name of the module (executable or DLL); the name of the procedure itself; a unique identifier for the procedure;
the time spent in the procedure, in its callers (parents) and in its callees (children); and the number of calls from
each caller to the procedure and from the procedure to each callee.

popular Win32 programs that have been optimized for
code layout using Etch on a 90Mhz Pentium. Etch was
first used to discover the programs’ locality while exe-
cuting against a training input, and then to rewrite the
applications, in order to achieve a tighter cache and VM
packing. Infrequently executed basic blocks were
moved out of line, and frequently interacting blocks
were laid out contiguously in the executable, using an
algorithm based on Pettis and Hansen [Pettis & Hansen
1990]. The results were measured using hardware per-
formance counters. Different inputs were used for
training and testing.

2.3 Call Graph Profiling

An example of a relatively complex Etch tool is the
Etch call-graph profiler, CGProf. CGProf shows pro-
gram activity in terms of the program’s dynamic call-
graph, a format originally used by the UNIX gprof pro-
filer [Graham et al. 1983]. CGProf is designed to give
precise and complete information about the bottlenecks
and time-sinks in an application. Etch and CGProf can
use debugging information to provide output using pro-
cedure names. When source code is also available, a
coordinated GNU Emacs browsing mode provides
point-and-click navigation of source from CGProf pro-
files. CGProf provides multiple views of profile infor-
mation to help developers identify bottlenecks at differ-
ent structural levels. These views include a per-module

and per-procedure view, to identify the modules and
procedures where execution time is spent, as well as the
hierarchical view illustrated in Figure 5.

 CGProf uses Etch instrumentation to monitor all
procedure calls and returns during execution rather than
statistical sampling commonly found in other profilers.
CGProf can count either cycles or instructions to quan-
tify activity in application modules. When counting
cycles, the tool uses the hardware cycle counter to
measure path lengths. When counting instructions,
CGProf instruments every basic block to add the length
of the basic block to a counter.

3 Using Tools Written With Etch

There are three basic ways to use tools developed
with Etch: one-at-a-time by hand; using a GUI; or
through a tool-specific wrapper from the command line.
The first, and most primitive, is to simply invoke Etch
for each component in a program, passing in as an ar-
gument the name of the tool and the program compo-
nent. For complex programs, this can be somewhat te-
dious and error prone, as it is necessary to specify each
program component one at a time.

The second and more convenient way to run Etch is
to use a graphical user interface. The Etch GUI (Visual
Etch) makes a standard collection of tools available to
Etch users without requiring that they write or under-
stand the mechanics of building Etch tools. Our goal in

Figure 6: The Visual Etch user interface.

developing the GUI was to make it extremely easy for
the naïve user (such as an undergraduate programmer in
an architecture course) to be able to run sophisticated
experiments on commercial software. As such, it very
much follows the “point, click, and go” model of con-
trol as illustrated by Figure 6. The user simply specifies
a program and a tool, runs the program as modified by
the tool, and then looks at the output.

The user interface determines all of the program
components, drives the rewriting process and ensures
that whatever environment (e.g., working directory, data
files, etc.) was initially available to the original execu-
table is available to the transformed executable at run
time. The GUI first runs Etch on the original binary to
produce a new binary that has been modified to collect
the necessary data. It executes the modified binary to
produce the data, and feeds the data to analysis tools
that produce graphs or charts that illustrate behavior or
pinpoint problems. For example, Figure 7 shows the
output from an opcode histogram tool that displays the
distribution of instruction types for an MPEG player. If
Etch is being used to optimize performance, the user

may instruct Etch to apply a performance-optimization
transformation. For example, Etch may rewrite the
original binary to change the layout of data or code in
order to improve cache or virtual memory performance,
as was illustrated in Figure 4.

The third way to run Etch is by using a command
line version of the instrumentation front end. Our
command line front end is based on a generic wrapper
program that is specialized at compile time to the spe-
cific instrumentation tool with which it will be used. For
example, we compile the wrapper along with the
CGProf libraries to build the program CGInstrument.
CGInstrument can then be used to instrument applica-
tions for call-graph profiling. Once instrumented, the
profiled application can be run, and then another com-
mand, CGProfile , is used to post-process the raw pro-
file information. For example, the sequence of com-
mands to instrument and profile notepad.exe would be:

 C:> cginstrument notepad.exe
 C:> notepad-cgprof.exe
 C:> cgprofile notepad.exe

Figure 7: Sample results showing distribution of instruction opcodes.

The first step takes the original program (in this
case notepad.exe) and all of its DLLs and produces ver-
sions that have been transformed to collect profile in-
formation. The second step runs the transformed ver-
sion of the program (and uses all of the transformed
DLLs), calling into the run time analysis routines to
generate an output file containing profile information.
Finally, the third step converts this output file into hu-
man-readable text.

The CGProf command line interface makes it pos-
sible to include profiling with CGProf as a part of an
automated build/test environment, rather than requiring
interaction with a GUI. The CGProf command line in-
terface manages the discovery and instrumentation of all
the modules used by an application. It can watch the
application during a training run to build the entire list
of modules used by the application for a specific test
and make the list available to the instrumentation proc-
ess. Alternatively, new modules can be detected and
instrumented while the profiling experiment runs. This
makes it possible to eliminate the training run, and to
accommodate slight variations in testing runs that cause
new DLLs to be loaded.

4 Summary

Etch is a general binary rewriting tool for Win32
executables running on Intel architectures. Its key fea-
tures are a generalized API that allows tools to be de-
veloped relatively quickly and run with relatively good
performance. To learn more about the Etch project, or
to obtain a version of this paper with color figures,
please visit:

http://www.cs.washington.edu/homes/bershad/etch
For traces generated from a few popular Win32 pro-
grams on the x86, visit:

http://etch.eecs.harvard.edu/traces/index.html

References
[Chow et al. 1986]

Fred Chow, A. M. Himelstein, Earl Killian and
L. Weber, `”Engineering a RISC Compiler
System,” IEEE COMPCON, March 1986.

[Eggers et al. 1990]
S. Eggers, D. Keppel, E. Koldinger and H.
Levy, “Techniques for Efficient Inline Tracing
on a Shared Memory Multiprocessor,” Pro-
ceedings of the ACM Conference on Meas-
urement and Modeling of Systems, May 1990.

[Graham et al. 1983]
S. Graham, P. Kessler, and M. McKusick. “An
Execution Profiler for Modular Programs,”
Software - Practice and Experience, 13, pp.
671-685, 1983.

[Larus & Schnarr 1995]
James R. Larus and Eric Schnarr, “EEL: Ma-
chine-Independent Executable Editing”, Pro-
ceedings of the 1995 ACM SIGPLAN Confer-
ence on Programming Languages Design and
Impelementation (PLDI), June 1995.

 [Pettis & Hansen 1990]
Karl Pettis and Robert Hansen, “Profile-
Guided Code Positioning”, Proceedings of the
1990 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI), June 1990.

 [Pietrek 1994]
Matt Pietrek, “Peering Inside PE: A Tour of
the Win32 Portable Executable Format”, Mi-
crosoft Systems Journal, Vol. 9, No. 3, pg 15-
34, March 1994.

[Srivastava & Eustace 1994]
A. Srivastava and A. Eustace. “ATOM: A
System for Building Customized Program
Analysis Tools,” Proceedings of the 1994
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
June 1994. See also DEC WRL Research Re-
port 94/2.

[TracePoint 97]
http://tracepoint.galatia.com/frames.html

